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PREFACE

The matrix methods of structural analysis developed for use on modern digital
computers, universally accepted in structural design, provide a means for rapid
and accurate analysis of complex structures under both static and dynamic
loading conditions.

The matrix methods are based on the concept of replacing the actual con-
tinuous structure by an equivalent model made up from discrete structural
elements having known elastic and inertial properties expressible in matrix form.
The matrices representing these properties are considered as building blocks
which, when fitted together in accordance with a set of rules derived from the
theory of elasticity, provide the static and dynamic properties of the actual
structure.

In this text the general theory of matrix structural analysis is presented. The
following fundamental principles and theorems and their applications to matrix
theory are discussed: principles of virtual displacements and virtual forces,
Castigliano's theorems, minimum-strain-energy theorem, minimum-comple-'
mentary-strain-energy theorem, and the unit-displacement and unit-load
theorems. The matrix displacement and force methods of analysis are pre-
sented together with the elastic, thermal, and inertial properties of the most
commonly used structural elements. Matrix formulation of dynamic analysis
of structures, calculation of vibration frequencies and modes, and dynamic
response of undamped and damped structural systems are included. Further-
more, structural synthesis, nonlinear effects due to large deflections, inelasticity,
creep, and buckling are also discussed.

The examples illustrating the various applications of the theory of matrix



structural analysis have been chosen so that a slide rule is sufficient to carry out
the numerical calculations. For the benefit of the reader who may be un-
familiar with the matrix algebra, Appendix A discusses the matrix operations and
their applications to structural analysis. Appendix B gives an extensive bib-
liography on matrix methods of structural analysis.

This book originated as lecture notes prepared for a graduate course in
Matrix Structural Analysis, taught by the author at the Air Force Institute of
Technology and at the Ohio State University. The book is intended for both
the graduate student and the structural engineer who wish to study modern
methods of structural analysis; it should also be valuable as a reference source
for the practicing structural engineer.

Dr. Peter J. Torvik, Associate Professor of Mechanics, Air Force Institute of
Technology, and Walter J. Mykytow, Assistant for Research and Technology,
Vehicle Dynamics Division, Air Force Flight Dynamics Laboratory, carefully
read the manuscript and made many valuable suggestions for improving the
contents. Their contributions are gratefully acknowledged. Wholehearted
thanks are also extended to Sharon Coates for her great patience and cooperation
in typing the entire manuscript.

J. S. PRZEMIENIECKI
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CHAPTER 1
MATRIX METHODS

1.1 INTRODUCTION

Recent advances in structural technology have required greater accuracy and
speed in the analysis of structural systems. This is particularly true in aero-
space applications, where great technological advances have been made in the
development of efficient lightweight structures for reliable and safe operation
in severe environments. The structural design for these applications requires
consideration of the interaction of aerodynamic, inertial, elastic, and thermal
forces. The environmental parameters used in aerospace design calculations
now include not only the aerodynamic pressures and temperature distributions
but also the previous load and temperature history in order to account for
plastic flow, creep, and strain hardening. Furthermore, geometricnonlinearities
must also be considered in order to predict structural instabilities and determine
large deflections. It is therefore not surprising that new methods have been
developed for the analysis of the complex structural configurations and designs
used in aerospace engineering. In other fields of structural engineering, too,
more refined methods of analysis have been developed. Just to mention a few
examples, in nuclear-reactor structures many challenging problems for the
structures engineer call for special methods of analysis; in architecture new
structural-design concepts require reliable and accurate methods; and in ship
construction accurate methods are necessary for greater strength and efficiency.

The requirement of accuracy in analysis has been brought about by a need for
demonstrating structural safety. Consequently, accurate methods of analysis
had to be developed since the conventional methods, although perfectly satis-
factory when used on simple structures, have been found inadequate when
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applied to complex structures. Another reason why greater accuracy is re-
quired results from the need to establish the fatigue strength level of structures;
therefore, it is necessary to employ methods of analysis capable of predicting
accurately any stress concentrations so that we may avoid structural fatigue
failures.

The requirement of speed, on the other hand, is imposed by the need of
having comprehensive information on the structure sufficiently early in the
design cycle so that any structural modifications deemed necessary can be
incorporated before the final design is decided upon and the structure enters
into the production stages. Furthermore, in order to achieve the most efficient
design a large number of different structural configurations may have to be
analyzed rapidly before a particular configuration is selected for detailed study.

The methods of analysis which meet the requirements mentioned above use
matrix algebra, which is ideally suited for automatic computation on high-speed
digital computers. Numerous papers on the subject have been published, but
it is comparatively recently that the scope and power of matrix methods have
been brought out by the formulation of general matrix equations for the analysis
of complex structures. In these methods the digital computer is used not only
for the solution of simultaneous equations but also for the whole process of
structural analysis from the initial input data to the final output, which repre-
sents stress and force distributions, deflections, influence coefficients, character-
istic frequencies, and mode shapes.

Matrix methods are based on the concept of replacing the actual continuous
structure by a mathematical model made up from structural elements of finite
size (also referred to as discrete elements) having known elastic and inertial
properties that can be expressed in matrix form. The matrices representing
these properties are considered as building blocks, which, when fitted together
according to a set of rules derived from the theory of elasticity, provide the
static and dynamic properties of the actual structural system. In order to
put matrix methods in the correct perspective, it is important to emphasize the
relationship between matrix methods and classical methods as used in the
theory of deformations in continuous media. In the classical theory we are
concerned with the deformational behavior on the macroscopic scale without
regard to the size or shape of the particles confined within the prescribed
boundary of the structure. In the matrix methods particles are of finite size
and have a specified shape. Such finite-sized particles are referred to as the
structural elements, and they are specified somewhat arbitrarily by the analyst
in the process of defining the mathematical model of the continuous structure.
The properties of each element are calculated, using the theory of continuous
elastic media, while the analysis of the entire structure is carried out for the
assembly of the individual structural elements. When the size of the elements
is decreased, the deformational behavior of the mathematical model converges
to that of the continuous structure.
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Matrix methods represent the most powerful design tool in structural
engineering. Matrix structural-analysis programs for digital computers are
now available which can be applied to general types of built-up structures.
Not only can these programs be used for routine stress and deflection analysis
of complex structures, but they can also be employed very effectively for studies
in applied elasticity.

Although this text deals primarily with matrix methods of structural analysis
of aircraft and space-vehicle structures, it should be recognized that these
methods are also applicable to other types of structures. The general theory
for the matrix methods is developed here on the basis of the algebraic symbolism
of the various matrix operations; however, the computer programming and
computational procedures for the high-speed electronic computers are not dis-
cussed. The basic theory of matrix algebra necessary for understanding matrix
structural analysis is presented in Appendix A with a view to convenient
reference rather than as an exhaustive treatment of the subject. For rigorous
proofs of the various theorems in matrix algebra and further details of the
theory of matrices, standard textbooks on the subject should be consulted.

1.2 DESIGN ITERATIONS

The primary function of any structure is to support and transfer externally
applied loads to the reaction points while at the same time being subjected to
some specified constraints and a known temperature distribution. In civil
engineering the reaction points are those points on the structure which are
attached to a rigid foundation. On a flight-vehicle structure the concept of
reaction points is not required, and the points can now be chosen somewhat
arbitrarily.

The structures designer is therefore concerned mainly with the analysis of
known structural configurations which are subjected to known distributions
of static or dynamic loads, displacements, and temperatures. From his point
of view, however, what is really required is not the analysis but structural
synthesis leading to the most efficient design (optimum design) for the specified
load and temperature environment. Consequently, the ultimate objective in
structural design should not be the analysis of a given structural configuration
but the automated generation of a structure, i.e., structural synthesis, which
will satisfy the specified design criteria.

In general, structural synthesis applied to aerospace structures requires
selection of configuration, member sizes, and materials. At present, however,
it is not economically feasible to consider all parameters. For this reason, in
developing synthesis methods attention has been focused mainly on the variation
of member sizes to achieve minimum weight subject to restrictions on the
stresses, deflections, and stability. Naturally, in any structural synthesis all
design conditions must be considered. Some significant progress has already
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been made in the development of structural-synthesis methods. This has been
prompted by the accomplishments in the fields of computer technology, struc-
tural theory, and operations research, all of which could be amalgamated and
developed into automated design procedures. Synthesis computer programs
are now available for relatively simple structures, but one can foresee that in
the near future these programs will be extended to the synthesis of large
structural configurations.

In present-day structural designs the structure is designed initially on the
basis of experience with similar types of structures, using perhaps some simple
analytical calculations, then the structure is analyzed in detail by numerical
methods, and subsequently the structure is modified by the designer after
examination of the numerical results. The modified structure is then re-
analyzed, the analysis examined, and the structure modified again, and so on,
until a satisfactory structural design is obtained. Each design cycle may
introduce some feedback on the applied loading if dynamic and aeroelastic
conditions are also considered. This is due to the dynamic-loading dependence
on the mass and elastic distributions and to the aerodynamic-loading dependence
on elastic deformations of the structure.

To focus attention on the design criteria, the subsequent discussion will be
restricted to structures for aerospace applications; however, the general con-
clusions are equally applicable to other types of structures. The complexity
of structural configurations used on modern supersonic aircraft and aerospace
vehicles is illustrated in Figs. 1.1 and 1.2 with perspective cutaway views of the
structure of the XB-70 supersonic aircraft and the Titan III launch vehicle.
These structures are typical of modern methods of construction for aerospace
applications. The magnitude of the task facing the structures designer can
be appreciated only if we consider the many design criteria which must all be
satisfied when designing these structures. The structural design criteria are
related mainly to two characteristics of the structure, structural strength and
structural stiffness. The design criteria must specify the required strength to

FIG. 1.1 Structural details of the XB-70 supersonic aircraft. (North American Aviation
Company, Inc.)
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FIG. 1.2 Structural details of the Titan III launch
vehicle. (Martin Company)

ensure structural integrity under any loading and environment to which the
structure may be subjected in service and the required stiffness necessary to
prevent such adverse aeroelastic effects as flutter, divergence, and reversal of
controls. Whether or not these criteria are satisfied in a specific design is
usually verified through detailed stress and aeroelastic analysis. Naturally,
experimental verification of design criteria is also used extensively.
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The structural design criteria are formed on the basis of aircraft performance
and the aerodynamic characteristics in terms of maneuvers and other conditions,
e.g., aerodynamic heating, appropriate to the intended use of the structure, and
they are specified as the so-called design conditions. Before the actual struc-
tural analysis can be started, it is necessary to calculate the loading systems due
to the dynamic loads, pressures, and temperatures for each design condition.
Once the design conditions and the corresponding loading systems have been
formulated, the structural and aeroelastic analyses of the structure can be
performed provided its elastic properties and mass distributions are known.

Structural

design
criteria

Moss
distribution

Structural

layout
and details

I

Dynamic loads
and pressure

distributions

Design modifications

Design reappraisal
aimed toward
optimization

Structural
analysis

Strength
requirements

Aeroelostic
analysis

Stiffness
requirements

Flutter, divergence,
and control

reversal speeds

Aerodynamics
and

performance
criteria

Temperature
distribution

Thermal
strains

Static or dynamic
stresses and
deflections

tT
FIG. 1.3 Analysis cycle for aircraft structural design.
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The structural analysis gives stress distributions which can be compared with
the maximum allowable stresses, and if the stress levels are unsatisfactory
(either too high or too low), structural modifications are necessary to achieve
the optimum structural design. This usually implies a minimum-weight struc-
ture, although in the optimization process economic aspects may also have a
decisive influence in selecting materials or methods of construction. It should
also be mentioned that factors of safety are used in establishing design con-
ditions. These factors are necessary because of the possibility that (1) the
loads in service exceed the design values and (2) the structure is actually less
strong than determined by the design calculations. Similarly, the aeroelastic
analysis must demonstrate adequate margins of safety in terms of structural
stiffness for the specified performance and environment to avoid adverse aero-
elastic phenomena and ensure flight safety.

The structural modifications deemed necessary for reasons of strength or
stiffness may be so extensive as to require another complete cycle of structural
and aeroelastic analysis. In fact, it is not uncommon to have several design
iterations before achieving a satisfactory design which meets the required
criteria of strength and stiffness. A typical structural-analysis cycle in aircraft
design is presented in Fig. 1.3, where some of the main steps in the analysis are
indicated. The dotted lines represent the feedback of design information,
which is evaluated against the specified requirements (design criteria) so that
any necessary modifications in the structural layout or structural details can
be introduced in each design cycle.

1.3 METHODS OF ANALYSIS

Methods of structural analysis can be divided into two groups (see Fig. 1.4),
analytical methods and numerical methods. The limitations imposed by the
analytical methods are well known. Only in special cases are closed-form
solutions possible. Approximate solutions can be found for some simple
structural configurations, but, in general, for complex structures analytical
methods cannot be used, and numerical methods must invariably be employed.
The numerical methods of structural analysis can be subdivided into two types,
(1) numerical solutions of differential equations for displacements or stresses
and (2) matrix methods based on discrete-element idealization.

In the first type the equations of elasticity are solved for a particular structural
configuration, either by finite-difference techniques or by direct numerical
integration. In this approach the analysis is based on a mathematical approxi-
mation of differential equations. Practical limitations, however, restrict the
application of these methods to simple structures. Although the various
operations in the finite-difference or numerical-integration techniques could be
cast into matrix notation and the matrix algebra applied to the solution of the
governing equations for the unknowns, these techniques are generally not
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Structural analysis

Analytical methods

Solution of
differential
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Finite difference
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Numerical methods

Numerical
integration

FIG. 1.4 Methods of structural analysis.

Matrix methods

Discrete element
idealization

Displacement
methods

Force
methods

described as matrix methods since matrices are not essential in formulating the
analysis.

In the second type the complete structural theory is developed ab initio in
matrix algebra, through all stages in the analysis. The structure is first idealized
into an assembly of discrete structural elements with assumed form of dis-
placement or stress distribution, and the complete solution is then obtained
by combining these individual approximate displacement or stress distributions
in a manner which satisfies the force-equilibrium and displacement compati-
bility at the junctions of these elements. Methods based on this approach
appear to be suitable for the analysis of complex structures. These methods
involve appreciable quantities of linear algebra, which must be organized into
a systematic sequence of operations, and to this end the use of matrix algebra
is a convenient method of defining the various processes involved in the analysis
without the necessity of writing out the complete equations in full. Further-
more, the formulation of the analysis in matrix algebra is ideally suited for
subsequent solution on the digital computer, and it also allows an easy and
systematic compilation of the required data.

Two complementary matrix methods of formulation of any structural problem
are possible: (1) the displacement method (stiffness method), where displace-
ments are chosen as unknowns, and (2) the force method (flexibility method),
where forces are unknowns. In both these methods the analysis can be thought
of as a systematic combination of individual unassembled structural elements
into an assembled structure in which the conditions of equilibrium and com-
patibility are satisfied.
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1.4 AREAS OF STRUCTURAL ANALYSIS

Structural analysis deals essentially with the determination of stress and dis-
placement distributions under prescribed loads, temperatures, and constraints,
both under static and dynamic conditions. Numerous other areas, however,
must also be explored through detailed analysis in order to ensure structural
integrity and efficiency. The main areas of investigation in structural design
are summarized below:

stress distribution
displacement distribution
structural stability
thermoelasticity (thermal stresses and displacements)
plasticity
creep
creep buckling
vibration frequencies
normal modes of vibration
aeroelasticity, e.g., flutter, divergence
aerothermoelasticity, e.g., loss of stiffness due to aerodynamic heating
dynamic response, e.g., due to gust loading
stress concentrations
fatigue and crack propagation, including sonic fatigue
optimization of structural configurations



CHAPTER 2
BASIC EQUATIONS
OF ELASTICITY

For an analytical determination of the distribution of static or dynamic dis-
placements and stresses in a structure under prescribed external loading and
temperature, we must obtain a solution to the basic equations of the theory of
elasticity, satisfying the imposed boundary conditions on forces and/or dis-
placements. Similarly, in the matrix methods of structural analysis we must
also use the basic equations of elasticity. These equations are listed below,
with the number of equations for a general three-dimensional structure in
parentheses:

strain-displacement equations (6)
stress-strain equations (6)
equations of equilibrium (or motion) (3)

Thus there are fifteen equations available to obtain solutions for fifteen
unknown variables, three displacements, six stresses, and six strains. For two-
dimensional problems we have eight equations with two displacements, three
stresses, and three strains. Additional equations pertain to the continuity of
strains and displacements (compatibility equations) and to the boundary
conditions on forces and/or displacements.

To provide a ready reference for the development of the general theory of
matrix structural analysis, all the basic equations of the theory of elasticity are
summarized in this chapter, and when convenient, they are also presented in
matrix form.
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2.1 STRAIN-DISPLACEMENT EQUATIONS

The deformed shape of an elastic structure under a given system of loads and
temperature distribution can be described completely by the three displacements

U. = ux(x,y,Z)
u = uY(x,y,Z)

uz = 11z(x,y,Z)

(2.1)

The vectors representing these three displacements at a point in the structure
are mutually orthogonal, and their positive directions correspond to the positive
directions of the coordinate axes. In general, all three displacements are
represented as functions of x, y, and z. The strains in the deformed structure
can be expressed as partial derivatives of the displacements ux, u,,, and uz. For
small deformations the strain-displacement relations are linear, and the strain
components are given by (see, for example, Timoshenko and Goodier)*

aux
e- =

ax
ezz (2.2a)

exv = edx ax -I- 8y
auz au

ez ay + i az

aux auz
ezm = exz

az + ax

auz

az

(2.2b)

where e., e,,,,, and ezZ represent normal strains, while ezl,, e1z, and e. represent
shearing strains. Some textbooks on elasticity define the shearing strains with
a factor j at the right of Eqs. (2.2b). Although such a definition allows the use
of a single expression for both the normal and shearing strains in tensor
notation, this has no particular advantage in matrix structural analysis.
Eqs. (2.2b) it follows that the symmetry relationship

From

ei5=e5 i,j=x,y,z (2.3)

is valid for all shearing strains, and therefore a total of only six strain com-
ponents is required to describe strain states in three-dimensional elasticity
problems.

To derive the strain-displacement equations (2.2) we shall consider a small
rectangular element ABCD in the xy plane within an elastic body, as shown in
Fig. 2.1. If the body undergoes a deformation, the undeformed element ABCD
moves to A'B'C'D'. We observe here that the element has two basic geometric

* General references are listed in Appendix B.
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0

FiG. 2.1 Deformations of a strained element.

x

deformations, change in length and angular distortion. The change in length
of AB is (au/ax) dx, and if we define the normal strain as the ratio of the
change of length over the original length, it follows that the normal strain in
the x direction is aux/ax. Similarly it can be shown that the normal strains in
the y and z directions are given by the derivatives and auZ/az. The
angular distortion on the element can be determined in terms of the angles yl
and ys shown in Fig. 2.1. It is clear that for small deformations y, = aulax
and y2 = aujay. If the shearing strain ex,, in the xy plane is defined as the
total angular deformation, i.e., sum of the angles yl and yQ, it follows that this
shearing-strain component is given by au/ax + aux/ay. The other two
shearing-strain components can be obtained by considering angular deforma-
tions in the yz and zx planes.

2.2 STRESS-STRAIN EQUATIONS

THREE-DIMENSIONAL STRESS DISTRIBUTIONS

Since the determination of thermal stresses plays an important part in the
design of structures operating a elevated temperatures, the stress-strain
equations must include the effects ol'temperature. To explain how temperature
modifies the three-dimensional isothermal stress-strain equations, we shall con-
sider a small element in the elastic body subjected to a temperature change T.



BASIC EQUATIONS OF ELASTICITY 13

If the length of this element is dl, then under the action of the temperature
change T the element will expand to a new length (1 + a.T) dl, where a. is the
coefficient of thermal expansion. For isotropic and homogeneous materials
this coefficient is independent of the direction and position of the element but
may depend on the temperature.

Attention will subsequently be confined to isotropic bodies, for which thermal
expansions are the same in all directions. This means that an infinitely small
unrestrained parallelepiped in an isotropic body subjected to a change in
temperature will experience only a uniform expansion without any angular
distortions, and the parallelepiped will retain its rectangular shape. Thus,
the thermal strains (thermal dilatations) in an unrestrained element may be
expressed as

eT = O,1a.T 1,j = x, y. Z (2.4)

where dis is the Kronecker delta, given by

Sif =
1 when i =j

0 when i j
Equation (2.4) expresses the fact that in isotropic bodies the temperature change
T produces only normal thermal strains while the shearing thermal strains are
all equal to zero; that is,

eT,,=O fori j (2.6)

Imagine now an elastic isotropic body made up of a number of small rec-
tangular parallelepiped elements of equal size which fit together to form a
continuous body. If the temperature of the body is increased uniformly and
no external restraints are applied on the body boundaries, each element will
expand freely by an equal amount in all directions. Since all elements are of
equal size, they will still fit to form a continuous body, although slightly
expanded, and no thermal stresses will be induced. If, however, the tempera-
ture increase is not uniform, each element will expand by a different amount,
proportional to its own temperature, and the resulting expanded elements will
no longer fit together to form a continuous body; consequently, elastic strains
must be induced so that each element will restrain the distortions of its neigh-
boring elements and the continuity of displacements on the distorted body will
be preserved.

The total strains at each point of a heated body can therefore be thought of
as consisting of two parts; the first part is the thermal strain ep,, due to the
uniform thermal expansion, and the second part-is the elastic strain Eif which is
required to maintain the displacement continuity of the body subjected to a
nonuniform temperature distribution. If at the same time the body is sub-
jected to a system of external loads, Eli will also include strains arising from
such loads. Now since the strains e{5 in Sec. 2.1 were derived from the total
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displacements due to a system of loads and temperature distribution, they
represent the total strains, and they can be expressed as the sum of the elastic
strains efi and the thermal strains eTl,. Hence

ef5 = E=t + era,
= E + aTdtt (2.7)

The elastic strains E 1 are related to the stresses by means of the usual Hooke's
law for linear isothermal elasticity

Exx=E[axx-v(avv+o )]

Evv = E + dxx)]

Ezz = E [cr.. - v(axx + a.)]

1 + v
Exu = 2 E axy

1+v
Evz = 2 E avz

1+v
Esx = 2 E azx

where E denotes Young's modulus and v is Poisson's ratio.
Substituting Eqs. (2.8) into (2.7) gives

ee =
E

[a. - v(avv + azs)] + aT

1

evv. = (avv - v(ax: + axx)] + aT

ezz = E [azz - v(axx + q.)] + aT

1+v
exv = 2 E axv

1 + v
evz = 2 E avx

1 +v
'ax = 2 E azx

Equations (2.9) represent the three-dimensional Hooke's law generalized for
thermal effects. These equations can be solved for the stresses aii, and the
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following stress-strain relationships are then obtained:

or = E [(1 - v)exx + v(evv + a:=)] -
EaT

xx (1 + v)(1 - 2v) 1 - 2v

avu (1 + v)(1 - 2v) [(1 - v)evv + v(ezz + ex)} - 1Ea
2T

v

Qzz (1 + v)(1 - 2v)
[(1 - v)ez1 + v(ee + en)] -

I Ea 2v

E
axv = 2(1 + v) ex

E

15

(2.10)

Qvs = 2(1 + v) evz

E
azx = 2(1 + v) ezz

Equations (2.9) and (2.10) can be written in matrix form as

rep I -v -v 0 0 0

eYY -v I -v 0 0 0 aYY

e -v -v I 0 0 0 a=:
+ aT

UI

(2.11)
e:Y 0 0 0 2(I +v) 0 0 .V

0

er.

L e..J

0 0 0 0 2(I + v) 0

0 0 0 0 0 2(1 + v) ,7

Y.

1.

and
1-v v V 0 0 0 -
V I - v V 0 0 0

arY V V 1-v 0 0 0 eY Y

a.s E -1 2v e. ,

0 0 0 0 0
axr

(1 + v)(1 - 2v) 2
2y

00 0 0 0 1

exY

av.
2

ev .

La.:J 0 0 0 0 0 I-2v Le: J2J

EaT I 1 I (2.12)-2v 0

rod
It should be noted that in all previous equations the shearing stress-strain

relationships are expressed in terms of Young's modulus E and Poisson's ratio
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v. If necessary, the shear modulus G can be introduced into these equations
using

G
=

E
(2.13)

2(1 + v)

Equation (2.12) can be expressed symbolically as

a=xe+a.TxT (2.14)

where

a = {ax. o azz a. avz azx}

e = {e,, e
ro eza emv e., ezm}

xT = E {-1 -1 -1 0 0 0}
1 - 2v

I - v v V

v 1-v v

IV v 1-v
E

X
(1 + v)(1 - 2v)

0 0

0

0 0

I - 2v
2

0 0
2

(2.15)

(2.16)

(2.17)

(2.18)

The braces used in Eqs. (2.15) to (2.17) represent column matrices written
horizontally to save space. The term aTXT in Eq. (2.14) can be interpreted
physically as the matrix of stresses necessary to suppress thermal expansion so
that e = 0.

When we premultiply Eq. (2.14) by x-1 and solve fore, it follows that

e = x-la - aTx-1xT
=+a + e (2 19)T .

where
1 -v -v 0 0 0

-v 1 -v 0 0 0

1
-v -v 1 0 0 0

= x_1 = (2.20)
E 0 0 0 2(1+v) 0 0

0 0 0 0 2(1 + v) 0

0 0 0 0 0 2(1 + v)J
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and eT = -xTx 'xT
= xT{l 1 1 0 0 0} (2.21)

Equation (2.19) is, of course, the matrix representation of the strain-stress
relationships given previously by Eqs. (2.9).

TWO-DIMENSIONAL STRESS DISTRIBUTION
There are two types of two-dimensional stress distributions, plane-stress and

plane-strain distributions. The first type is used for thin flat plates loaded in
the plane of the plate, while the second is used for elongated bodies of constant
cross section subjected to uniform loading.

PLANE STRESS The plane-stress distribution is based on the assumption that

azz = 6zx = Qzv = 0 (2.22)

where the z direction represents the direction perpendicular to the plane of
the plate, and that no stress components vary through the plate thickness.
Although these assumptions violate some of the compatibility conditions, they
are sufficiently accurate for practical applications if the plate is thin.

Using Eqs. (2.22), we can reduce the three-dimensional Hooke's law repre-
sented by Eq. (2.12) to

1 v 0
a. e 1

E v 1 0 EaT
a e

1

(2.23)vu =
2

uu 1-1 -v 1 -v v

axu 0 0 ex 0
2

which in matrix notation can be presented as

a = xe + aTxT (2.24)

where

(2.25)

(2 26).e = {exx ev exu}

E {-1 -1 0} (2.27)xT
v

F1 v 0

E V 1 0 28)(2X=
1 - v2 1-v

.

0 0
2
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The matrix form of Eq. (2.24) is identical to that for the three=dimensional

stress distributions. Although the same symbols have been introduced here
for both the three- and two-dimensional cases, no confusion will arise, since in

the actual analysis it will always be clear which type of stress-strain relationship

should be used. The strains can also be expressed in terms of the stresses,
and therefore solving Eq. (2.23) for the strains e,., and exv gives

e, 1 -v 0 1

-v 1 0 aT 1

0 0 2(1 + v) ax 0

Furthermore, it follows from Eqs. (2.22) and (2.11) that

eEa = E
(axx + a,,,,) + aT

-v
I - v I-v

(2.29)

(2.30)

and eVz - - e,, = 0 (2.31)

Equation (2.30) indicates that the normal strain eZZ is linearly dependent on the
strains exx and e,,,,, and for this reason it has not been included in the matrix

equation (2.29).
The strain-stress equation for plane-stress problems can therefore be repre-

sented symbolically as

e = 4)a + er (2.32)

1 0-v

where 4_E 1 0 (2.33)

L0 0 2(1+v)

and e7. = a, (l 1 0) (2.34)

PLANE STRAIN The plane-strain distribution is based on the assumption that

a=crs=a 0 (2.35)

where z represents now the lengthwise direction of an elastic elongated body
of constant cross section subjected to uniform loading. With the above
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assumption, it follows then immediately from Eqs. (2.2) that

ezz = ezx = ezv = 0 (2.36)

When Eq. (2.36) is used, the three-dimensional Hooke's law represented by
Eq. (2.12) reduces to

E
(I -- v)(1 - 2v)

rl - v v 0

V 1-v 0

0 0
1 - 2v

L 2

exx

eau
- EaT

1 (2.37)
1 -2v

exN 0

Qzz = v(a'xx + a.) - Ea.T (2.38)

6uz = ozx = 0 (2.39)

Equation (2.38) implies that the normal stress o in the case of plane-strain
distribution is linearly dependent on the normal stresses o and ar,,,,. For this
reason the stress component azz is not included in the matrix stress-strain
equation (2.37). Equation (2.37) can be expressed symbolically as

a = xe -I- aTx2, (2.40)

where

a = {a. 0'vv a'xv} (2.41)

e = {exx ed exy} (2.42)

X7, =
E {-1 - I 0} (2.43)

1 - 2v
1-v v 0

E v 1-v 0 244x (1 +v)(1 -2v) ()1 - 2v
0 0

2

Solving Eqs. (2.37) for the strains exx, eu,,, and ezS gives the matrix equation

1exx 1 - v -v 0 vxx 1

e.,,= 1 + v -v 1 - v 0 { (1 + v)aT I
E

LexJ 0 0 2 arx 0

which may be expressed symbolically as

(2.45)

e =4a + eT (2.46)
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where for this case

1-v -v 0
1+v -v 1-v 0E

0 0 2

(2.47)

and er = (1 + v)cT{l 1 0} (2.48)

ONE-DIMENSIONAL STRESS DISTRIBUTIONS

If all stress components are zero except for the normal stress ax,., the Hooke's
law generalized for thermal effects takes a particularly simple form

axx = Eexx - EaT (2.49)

and exx = E oxx + aT

Equation (2.49) can be written symbolically as

a=xe+aTxr
where

a=axx

e = exx

x=E
XT =-E

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

2.3 STRESS-STRAIN EQUATIONS FOR INITIAL STRAINS

If any initial strains e1 are present, e.g., those due to lack of fit when the
elastic structure was assembled from its component parts, the total strains,
including the thermal strains eT,,, must be expressed as

e11 = e, + err, + eru (2.56)

where e,1 represents the elastic strains required to maintain continuity of dis-
placements due to external loading and thermal and initial strains. The elastic
strains are related to the stresses through Hooke's law, and hence it follows
immediately that the total strains for three-dimensional distributions are given
by

e=4a+eT+el (2.57)
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where el = (el., ervv ersa erxv errs elssf (2.58)

represents the column matrix of initial strains. When Eq. (2.57) is solved for
the stresses a, it follows that

a = xe - xeT - xel
= xe + a.Txz. - xel (2.59)

The concept of initial strains has also been applied in the analysis of structures
with cutouts. In this technique fictitious elements with some unknown initial
strains are introduced into the cutout regions so that the uniformity of the
pattern of equations is not disturbed by the cutouts. The analysis of the
structure with the cutouts filled in is then carried out, and the unknown initial
strains are determined from the condition of zero stress in the fictitious elements.
Thus the fictitious elements, which were substituted in the place of missing
elements, can be removed from the structure, and the resulting stress distribution
corresponds to that in a structure with the cutouts present.

2.4 EQUATIONS OF EQUILIBRIUM

Equations of internal equilibrium relating the nine stress components (three
normal stresses and six shearing stresses) are derived by considering equilibrium
of moments and forces acting on a small rectangular parallelepiped (see Fig.
2.2). Taking first moments about the x, )y, and z axes, respectively, we can

dx

V

dy

y

x
4-

FIG. 2.2 Parallelepiped used in derivation of internal-equilibrium equations,
only the stress components on a typical pair of faces are shown.
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show that in the absence of body moments

ai; = aii (2.60)

Resolving forces in the x, y, and z directions, we obtain three partial differen-
tial equations

aax +
axV+aaZ +xx=0
ay

aa"x

ax + a + aa.VZ -}- X = 0 (2.61)
y

axx+aazv+aazz+x=oay

where Xx, X,,, and X. represent the body forces in the x, y, and z directions,
respectively.

Equation (2.61) must be satisfied at all points of the body. The stresses a,,
vary throughout the body, and at its surface they must be in equilibrium with
the external forces applied on the surface. When the component of the surface
force in the ith direction is denoted by (Di, it can be shown that the consideration
of equilibrium at the surface leads to the following equations:

Ia,,x + mavL, + (Dy (2.62)
laZx + main, + n°., = (D_

where 1, m, and n represent the direction cosines' for an outward-drawn normal
at the surface. These equations are obtained by resolving forces acting on a
small element at the surface of the body, as shown in Fig. 2.3. In the particular
case of the plane-stress distribution Eqs. (2.62) reduce to

la= + ma.,, = (Dx Iaryx + may, _ Dy (2.63)

z2 in d$

FIG. 2.3 Equilibrium at the sur-
face; only the stress and surface
components in the x direction
are shown.
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The surface forces fir and the body forces X, must also satisfy the equations
of overall equilibrium; i.e., all external forces, including reactive forces, must
constitute a self-equilibrating load system. If the external load system consists
of a set of concentrated loads F. and concentrated moments M,, in addition
to ', and X,, the following six equations must be satisfied

j(Dx(!S +J XdV+ =0
r

(2.64)

P=0fdS+fxzdv+
4

f (1 y-(D,z)dS+f(Xy - XX,z)dV+EM,.=0
s

f(9)xz - (I2x) c1S + J(Xsz - XEx) dV + = 0 (2.65)

J((nx-(x),)dS+f(Xx-Xxy)dV+EM2=0
x

Equa tions (2.64) represent the condition that the sum of all applied loads in
the x, y, and z directions, respectively, must be equal to zero, while Eqs. (2.65)
represent the condition of zero moment about the x, y, and z axes, respectively.

2.5 COMPATIBILITY EQUATIONS
The strains and displacements in an elastic body must vary continuously, and
this imposes the condition of continuity on the derivatives of displacements
and strains. Consequently, the displacements u, in Eqs. (2.2) can be eliminated,
and the following six equations of compatibility are obtained:

ale,x a2euu a2e,y

ay2 + ax2 - ax ay

a2euu a2ezz a2eyz

aZ2 + aye ay az

a2ezz ale., ales,

aX2 + aZ2 aZ aX

a2exx I a aesx aexu
(2.66)

ayaz2ax(- ax + ay + az
ale,,,, - I a aezx aexu

az ax 2 ay ax ay + az
ale., 1 a aesx aex

ax ay - 2 az ax + ay - az
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For two-dimensional plane-stress problems, the six equations of compatibility
reduce to only one equation

a2erx + a2 2 = a2eztl (2.67)
ay2 axe ax ay

For multiply connected elastic bodies, such as plates with holes, additional
equations are required to ensure single-valuedness of the solution. These
additional equations are provided by the Cesaro integrals (see, for example,
Boley and Weiner). In matrix methods of structural analysis, however, we
do not use the compatibility equations or the Cesaro integrals. The funda-
mental equations of matrix structural theory require the use of displacements,
and only when the displacements are not used in elasticity problems are the
compatibility relations and the Cesaro integrals needed.



CHAPTER 3
ENERGY THEOREMS

3.1 INTRODUCTION

Exact solution of the differential equations of elasticity for complex structures
presents a formidable analytical problem which can be solved in closed form
only in special cases. Although the basic equations of elasticity have been
known since the beginning of the last century, it was not until the introduction
of the concept of strain energy toward the latter half of the last century that
big strides in the development of structural-analysis methods were made possible.

Early methods of structural analysis dealt mainly with the stresses and
deformations in trusses, and interest was then centered mainly on statically
determinate structures, for which the repeated application of equilibrium
equations at the joints was sufficient to determine completely the internal-force
distribution and hence the displacements. For structures which were statically
indeterminate (redundant), equations of internal-load equilibrium were in-
sufficient to determine the distribution of internal forces, and it was therefore
realized that additional equations were needed. Navier pointed out in 1827
that the whole problem could be simply solved by considering the displacements
at the joints, instead of the forces. In these terms there are always as many
equations available as there are unknown displacements; however, even on
simple structures, this method leads to a very large number of simultaneous
equations for the unknown displacements, and it is therefore not at all surprising
that displacement methods of analysis found only a very limited application
before the introduction of electronic digital computers.

Further progress in structural analysis was not possible until Castigliano
enunciated his strain-energy theorems in 1873. He stated that if Ui is the
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internal energy (strain energy) stored in the structure due to a given system of
loads and if X,, X0, ... are the forces in the redundant members, these forces
can be determined from the linear simultaneous equations

aU; au. p
(3.1)

ax, = ax,
These equations are, in fact, the deflection-compatibility equations supple-
menting the force-equilibrium equations that were inadequate in number to
determine all the internal forces. Other energy theorems developed by
Castigliano dealt with the determination of external loads and displacements
using the concept of strain energy.

The first significant step forward in the development of strain-energy methods
of structural analysis since the publication of Castigliano's work is due to
Engesser. Castigliano assumed that the displacements ate linear functions of
external loads, but there are naturally many instances where this assumption
is not valid. Castigliano's theory, as presented originally, indicated that the
displacements could be calculated from the partial derivatives of the strain
energy with respect to the corresponding external forces, that is,

aU;
= Ur (3.2)

aP,

where Pr is an external force and Ur is the displacement in the direction of P.
In 1889 Engesser introduced the concept of the complementary strain energy
U* and showed that derivatives of U* with respect to external forces always
give displacements, even if the load-displacement relationships are nonlinear.
Thus the correct form of Eq. (3.2) should have been

aU*
= U. (3.3)

aPr

Similarly, in Eqs. (3.1) for generality Castigliano should have dealt not with
the strain energy Uj but with the complementary strain energy U*, and the
equations should have been written as

aU* aU* p (3.4)
ax, = axo

The complementary energy U* has no direct physical meaning and therefore
is to be regarded only as a quantity formally defined by the appropriate equation.

Engesser's work received very little attention, since the main preoccupation
of structural engineers at that time was with linear structures, for which the
differences between energy and complementary energy disappear, and his work
was not followed up until 1941, when Westergaard developed Engesser's basic
idea further.
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Although the various energy theorems formed the basis for analysis of
redundant structures, very little progress was made toward fundamental
understanding of the underlying principles. Only in more recent years has
the whole approach to structural analysis based on energy methods been put on
a more rational basis. It has been demonstrated10* that all energy theorems
can be derived directly from two complementary energy principles:

1. The principle of virtual work (or virtual displacements)
2. The principle of complementary virtual work (or virtual forces)

These two principles form the basis of any strain-energy approach to structural
analysis. The derivation of these two principles using the concept of virtual
displacements and forces is discussed in subsequent sections.

The energy principles presented here will be restricted to small strains and
displacements so that strain-displacement relationships can be expressed by
linear equations; such displacements and the corresponding strains are obviously
additive. Furthermore, a nonlinear elastic stress-strain relationship will be
admitted unless otherwise stated.

3.2 WORK AND COMPLEMENTARY WORK; STRAIN
ENERGY AND COMPLEMENTARY STRAIN ENERGY

Consider a force-displacement diagram, as shown in Fig. 3.1, which for general-
ity is taken to be elastically nonlinear. The area W under the force-displacement
curve (shaded horizontally) is obviously equal to the work done by the external
force P in moving through the displacement it, and for linear systems this area
is given by

W = o Ptr (3.5)

8P

fW"

SW =P Su

8W = u SP

AW

FIG. 3.1 Work and complementary work.

* Numbers refer to works listed in Appendix B.
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In a linear system if displacement at is increased to at + du, the corresponding
increment in W becomes

OW=Pbu+UPbu (3.6)

For nonlinear systems terms of orders higher than bP bit would also be present in
OW, but detailed discussion of the higher-order terms will not be required,
since only first variations will be considered in the derivation of strain-energy
theorems. Only for stability analysis must the second variation of W also be
included.

In a three-dimensional structure subjected to a system of surface forces (1)t
and body forces Xt if the displacements are increased from ut to ut + but
while the temperature and also any initial strains are kept constant, the cor-
responding increment in work is given by

AW = rXT' bu dV -{ f VT bu dS + terms of higher order
v Je

=OW+402W+...

r
(3.7)

where 6W = I X'' 6u dV +J V' bu dS (3.8)J a

represents the first variation and 61W is the second variation in W. The
remaining symbols in Eq. (3.7) are defined by

bu = {bum bill/ bat,,} (3.9)

X = X. X X,,} (3.10)

cb _ {dc, (DV, (D,,) (3.11)

The first integral in (3.8) represents the work done by the body forces X, while
the second integral is the work done by the surface forces fi. The integrals
are evaluated over the whole volume and surface of the structure, respectively.
If any concentrated forces are applied externally, the surface integral in (3.8)
will also include a sum of products of the forces and the corresponding dis-
placement variations. For example, if only concentrated forces

P = (P1 P2 ... (3.12)

are applied to the structure, then

6W=Pr6U

where 6U = {SUl 6U2 -

(3.13)

(3.14)

represents the variations of displacements in the directions of the forces P.
The area to the left of the force-displacement curve, shaded vertically in

Fig. 3.1, is defined as the complementary work W*, since it can be regarded as
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the complementary area within the rectangle Pit. A perusal of Fig. 3.1 shows
that for linear elasticity W = W*, but even then it is still useful to differentiate
between work and complementary work. If now the body forces and surface
forces in a three-dimensional elastic structure are increased from X to X + dX
and from fi to + b 4b, respectively, the corresponding increment in the
complementary work is given by

0 W* =J UT 8X dV +J UT S cIS + terms of higher order
b 8

= 6W* + ,)62W* + .. . (3.15)

where 6W* =J UT dX dV +f. uT 8cD dS (3.16)
v

represents the first variation and 02W* is the second variation in W*. Other
symbols used are defined by

a= {u. U, ua} (3.17)

SX = {OX, OX 8X=} (3.18)

8fi = {Sba 8D &DZ} (3.19)

If only concentrated forces are applied, then

6W* = UT dP (3.20)

where

and

U = {U1 U2 ...
6P = {8P1 6P2 ... OP}

(3.21)

(3.22)

The stress-strain relationship will also be assumed to be given by a nonlinear
elastic law. It can easily be demonstrated that the area under the stress-elastic-
strain curve, shown shaded horizontally in Fig. 3.2, represents the density of

DU;

SU; =a Be

SUj=eSa

t1%;

a

C
FIG. 3.2 Strain-energy and complementary-
strain-energy densities.
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strain energy Uti, which may be measured in pound-inches per cubic inch.
The elastic strain energy Ut stored in the structure can be obtained by integrating
the strain-energy density U( over the whole volume of the structure. Hence

U{ =J U{ dV (3.23)
v

If now the displacements are increased from u to u + bu, there will be an
accompanying increase in strains from a to a + be, and the corresponding
increment in the strain-energy density will be given by

DUt = OT be + terms of higher order

where

SU{=aTbe

a = {azz avv azz azv aaz azz}

be _ {a SEyv be,L SEa SEtiz (SE.}

From Eqs. (3.23) and (3.25) it follows therefore that

bU{=56UdV=J up be dV

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The derivation of Eq. (3.25) follows immediately if we observe that strain
components be,., . . . are all independent variables so that in order to form
6U(, which is a scalar quantity, individual contributions such as or,,,, SE,, .. .
must be summed, and this can be obtained most conveniently from the matrix
product aT be.

The area to the left of the stress-strain curve, shown shaded vertically in
Fig. 3.2, represents the density of complementary strain energy U{ , from which
the complementary strain energy can be calculated using the volume integral

U,* =J U* dV (3.29)

If the stresses are increased from a to a + ba, the corresponding increment in
the density of complementary strain energy is given by

AU* = O' ba + terms of higher order

= 6 U,* + j62U* -f- ... (3.30)
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so 8Ud=o Be

8O, =e so

AUd

Be

where bU* = el' ba

Ud
FIG. 3.3 Strain-energy and complementary-
strain-energy densities of total deformation.

E = {Exx
EUV Ezz Exu Euz Ezx}

ba = Pa. bavv ba2Z 6ox 6a.)
Hence from Eqs. (3.29) and (3.31) it follows that

6U* =JbU* dV =J J (a dV
u

(3.31)

(3.32)

(3.33)

(3.34)

If initial strains are present, or if the structure is subjected to a nonuniform
temperature distribution, the stress-total-strain diagram must be of the form
shown in Fig. 3.3. It should be noted that for linear elasticity the stress-strain
relationship in Fig. 3.3 would be reduced to a straight line displaced to the
right relative to the origin, depending on the amount of the initial strain and/or
thermal strain. The horizontally shaded area represents the density of strain
energy of total deformation U,,, from which the strain energy of total deforma-
tion can be calculated using the volume integral

U" =J O, dV (3.35)

When the total strains are increased from e to e + be, we have

D Ud = b U(e + ?4ds Ua .+.... (3.36)

bU, = a7' be (3.37)

bud =J a" bbe dV (3.38)

be = {bexx be,,,, be.. bex be= (3.39)
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The vertically shaded area in Fig. 3.3 represents the density of complementary
strain energy of total deformation; this area will be denoted by the symbol Cl,*,.
The complementary strain ener'gyy of total deformation is then calculated from

U* `i
(3.40)

When the stresses are increased from a to a + da, we have

LU*=dU*+ PIG* +.. (3.41)

d0 = reT ba (3.42)

6Uj =J e7' 8a dV (3.43)
v

e = {e. evv ezz eau evz esa}

Since the total strains e are expressed as (see Chap. 2)

e=e+eT+el

(3.44)

(3.45)

the first variation of the complementary strain energy of total deformation
becomes

6U,* = eT da dV -1 I erT Sa dV +JeI ' ba dV
u v n

= dU* +J
V

bs dV +J Sa dV (3.46)
v n

where as = bai + Sa.. + 6622 (3.47)

Before leaving the subject of energy and complementary energy it may be
interesting to mention that two similar complementary functions are used in
thermodynamics; the free-energy function A of von Helmholtz and the energy
function G of Gibbs.

3.3 GREEN'S IDENTITY

In deriving the fundamental energy principles volume integrals of the type

I-f a(D aVdV i=x,y,z
V ai ai

(3.48)

must be transformed into a surface and a volume integral; the functions (1) and
V can be any functions of x, y, and z provided they are continuous within the
specified volume for integration. The necessary transformation will be carried
out through integration by parts, and then it will be shown that it actually
leads to Green's first identity.
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no. 3.4 Projection of the
surface area dS onto the
yz plane.

Consider a small surface area dS whose projection on the yz plane is a
rectangle dy dz (see Fig. 3.4). It is clear that the projections of dS onto the
three coordinate planes are related to dS by the following equations:

dy dz = dS cos =1 dS

dzdx=dScosO,,,,=mdS

dxdy=dScosO = n dS
(3.49)

where 1, m, and n denote the direction cosines of the outward normal at the
surface. Upon substituting i = x in Eq. (3.48) and using the first equation in
(3.49) it follows that

11J f.f 8
Yaip

1dSdx

=f ax1dS- f8 f (D 1dSdx
8

fPi/ds(1) -fa dV (3.50)

When i = y and z is substituted in Eq. (3.48), two more similar relationships
can be obtained. Hence

fo ay ay
dV f (D ay m dS -fro ys dv (3.51)

a

and
f", aD az dV

8c aZ n dS -fv az dV (3.52)
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If these three identities are added together, we obtain

ac ay, a(l) ay, alD ay, aV a ay,

"(ax ar + ay ay + Z az) c1V =f,(D(/ ax + »' ay + n aZ) c1S

-J (D V21p dV (3.53)

which represents the standard form of Green's first identity.

3.4 ENERGY THEOREMS BASED ON
THE PRINCIPLE OF VIRTUAL WORK

THE PRINCIPLE OF VIRTUAL WORK (THE
PRINCIPLE OF VIRTUAL DISPLACEMENTS)

In Sec. 3.2 the variations in displacements bu were assumed to be accompanied
by corresponding variations in stresses and forces, so that all increments in
work and strain energy were derived from two neighboring equilibrium states
in which the strains 6e derived from the displacements bu satisfied both the
equations of equilibrium and compatibility. It should be noticed, however,
that the first variations 6 Wand 6U4 are independent of the SP's and ba's. Thus
for the purpose of finding 6W and 6U;, the forces and stresses in the structure
can be assumed to remain constant while the displacements are varied from
u to u + bu. It follows therefore that the displacements bu must give rise to
strains which satisfy the equations of compatibility but not necessarily the
equations of equilibrium expressed in terms of strain components. This means
that the displacements bu can be any infinitesimal displacements as long as
they are geometrically possible; they must be continuous in the interior (within
the structure boundaries) and must satisfy any kinematic boundary conditions
which may be imposed on the actual displacements u; for example, zero dis-
placements and slopes at the built-in end of a cantilever beam. These in-
finitesimal displacements are referred to as virtual displacements, a term borrowed
from rigid-body mechanics. In the subsequent analysis the variations 6W and
6U1 derived from the virtual displacements bu will be called virtual work and
virtual strain energy, respectively.

If the three equations of internal equilibrium, Eqs. (2.61), are multiplied by
the virtual displacements bux, bu", and buz, respectively, and integrated over the
whole volume of the structure, the addition of the resulting three integrals leads to

J (ax+ ay+ azz+xx)buxdv
v

}J bu"dV
v`

+f ay" + aZZ + xZ) buz dV = 0 (3.54)
v



ENERGY THEOREMS 35

Applying now Green's identities (3.50) to (3.52) to Eq. (3.54), we have

(' ('
5 oxrl dux (IS - J uxx

adtl,
c!V + J dux c!S - J 6,,,,

Nil,
dV -{- J axstr dtrx dS

rax R ay R

I a.Z
aaztx dV +Jx 6u dV +RUL,! dtt c!s - aa dV ±5 ar,,,,m du dS

- fUQ,,,, y'1 f f8r ibu.dS

abut abut J r

J i a"x a c!V + 6u., dS - J uaZ ay d V +J bit., dS

- a= abuz
dV +5 X2 buZ dV = 0 (3.55)

U

Since the virtual displacements bux, bit,,, and bit. are continuous, abtrxl ax =
b(auxlax), etc., and since axy = a,,x, etc., Eq. (3.55) can be simplified to

f [(ax.! + oxan) bux + (av + a,,,m + auan) brr,
s r

+ (oZx1 + aaan) buZ] dS +J (X,, bux + X &,, + X. buZ) dV

a"T)+_ au (aua au au
=.[a__

a acy y
auZ aua aux

+ ay. b
(LIl"

az + ay) + azx b I ax + az )] dV (3.56)

Using now the strain-displacement relationships (2.2) for the strain increments
and equations of stress equilibrium on the surface (2.62), and assuming that
breT = bel, = 0, we obtain from (3.56)

J
4,T bU dS +J XT bu dV =J a" be dV (3.57)

a a n

Hence, from Eqs. (3.8), (3.28), and (3.57), it follows that

6W= but (3.58)

Equation (3.58) represents the principle of virtual work, which states that an
elastic structure is in equilibrium under a given system of loads and temperature
distribution if for any virtual displacement bu from a compatible state of
deformation u the virtual work is equal to the virtual strain energy. An al-
ternative name for this principle is the principle of virtual displacements.
Equation (3.58) can also be used for large deflections provided that when the
strain energy Ut is calculated, nonlinear (large-deformation) strain-displacements
relations are used and the equilibrium equations are considered for the deformed
structure.10
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THE PRINCIPLE OF A STATIONARY
VALUE OF TOTAL POTENTIAL ENERGY

The principle of virtual work can be expressed in a more concise form as

h(U = B(Uf + U.) = 0 (3.59)

where 8Ua = -6W (3.60)

and Ue is the potential of external forces. The subscript a has been added to
the variation symbol 6 to emphasize that only elastic strains and displacements
are to be varied. In calculating the potential of external forces U,, it should be
observed that all displacements are treated as variables wherever the cor-
responding forces are specified. The quantity

U = U; + U. (3.61)

is the total potential energy of the system provided the potential energy of the
external forces in the unstressed condition is taken as zero. Thus Eq. (3.59)
may be described as the principle of stationary value of total potential energy.
Since only displacements, and hence strains, are varied, this principle could
alternatively be expressed by the statement that "of all compatible displacements
satisfying given boundary conditions, those which satisfy the equilibrium
conditions make the total potential energy U assume a stationary value."

The stationary value of U is always a minimum, and therefore a structure
under a system of external loads and temperature distribution represents a
stable system. The proof that U is a minimum for the exact system of stresses
when compatible strain and displacement variations are considered has been
given by Biezeno and Grammel.

CASTIGLIANO'S THEOREM (PART 1)
Consider a structure having some specified temperature distribution and sub-
jected to a system of external forces P1, PQ, ... , Pr, . . . , P,,, and then apply only
one virtual displacement 6U, in the direction of the load P, while keeping
temperatures constant. The virtual work

(5 W = P, b u, (3.62)

and from the principle of virtual work it immediately follows that

SU, = P, 6U,. (3.63)

Hence, in the limit

(8 U{) = P (3 64),. .

which is the well-known Castigliano's theorem (part I). Equation (3.64) can
also be used for large deflections provided the strain energy U, is calculated
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using large deformation strains (see Chap. 15). Matrix formulation of this
theorem for linear problems is discussed in Sec. 5.3.

If instead of one virtual displacement bUr we introduce a virtual rotation
00r in the direction of a concentrated moment Mr, then Castigliano's theorem
becomes

aU;
= M,air '=cons6 (3.65)

THE THEOREM OF MINIMUM STRAIN ENERGY

If in a strained structure only such virtual displacements are selected which
are zero at the applied forces, then
b W = 0 (3.66)

and therefore Eq. (3.58) reduces to
by, = 0 (3.67)

where the subscript c has been added to indicate that only strains and displace-
ments are varied. If the second variation of the strain energy is considered,
it can be shown that b,U; = 0 represents in fact the condition for minimum
strain energy. For this reason, therefore, Eq. (3.67) is referred to as the theorem
of minimum strain energy.

THE UNIT-DISPLACEMENT THEOREM"

This theorem is used to determine the force Pr necessary to maintain equilibrium
in a structure for which the distribution of true stresses is known. Let the
known stresses be given by a stress matrix a. If a virtual displacement SUr
is applied at the point of application and in the direction of Pr so that virtual
strains bEr are produced in the structure, then when the virtual work is equated
to the virtual strain energy, the following equation is obtained:

Pr SU, =faT bEr dV (3.68)

In a linearly elastic structure bEr is proportional to OU,.; that is,

bEr = Er SUr (3.69)

where .S. represents compatible strain distribution due to a unit displacement
(bUr = 1) applied in the direction of F. The strains Er must be compatible
only with themselves and with the imposed unit displacement. Substituting
Eq. (3.69) into (3.68) and canceling out the factor bUr gives

Pr =f aT Er dV (3.70)
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Equation (3.70) represents the unit-displacement theorem,1° which states that
the force necessary, at the point r in a structure, to maintain equilibrium under
a specified stress distribution (which can also be derived from a specified
displacement distribution) is equal to the integral over the volume of the
structure of true stresses a multiplied by strains er compatible with a unit
displacement corresponding to the required force. This theorem is restricted
to linear elasticity in view of the assumption made in Eq. (3.69).

The unit-displacement theorem can be used very effectively for the calculation
of stiffness properties of structural elements used in the matrix methods of
structural analysis. Matrix formulation of the unit-displacement theorem and
its application to the displacement method of analysis are discussed at some
length in Sec. 5.2.

3.5 ENERGY THEOREMS BASED ON THE
PRINCIPLE OF COMPLEMENTARY VIRTUAL WORK

THE PRINCIPLE OF COMPLEMENTARY VIRTUAL
WORK (THE PRINCIPLE OF VIRTUAL FORCES)

The variations 6W* and St,* are independent of bu's and Se's. Thus, for the
purpose of finding SW* and SU,*, the displacements and total strains can be
assumed to remain constant while the forces and stresses are varied. It follows
therefore that the virtual stresses Sa and virtual body forces SX must satisfy
the equations of internal stress equilibrium, and the virtual surface forces Sib
must satisfy equations for boundary equilibrium, but the strains derived from
the virtual stresses need not necessarily satisfy the equations of compatibility.
This also implies that the virtual stresses and forces, that is, Sa, 6X, and bib,
can be any infinitesimal stresses or forces as long as they are statically possible;
they must satisfy all equations of equilibrium throughout the whole structure.
In the subsequent analysis, the increments SW* and SU,* derived from the
virtual forces will be referred to as complementary virtual work and comple-
mentary virtual strain energy of total deformation, respectively.

If the three equations of internal stress equilibrium for the virtual stresses
Sa and the virtual body forces SX are multiplied by the actual displacements
ux, u,,, and uZ, respectively, and integrated over the whole volume of the structure,
the addition of the resulting three integrals leads to the following equation:

J ax + a ay0 +
aaz"

-I- Sxx f cry dV
U

+f )u dV
ax ay aZ

+J (aax
x + az== + 6XZ uz dV = 0 (3.71)

v
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Applying Green's identities (3.50), (3.51), and (3.52) to Eq. (3.71), we obtain

LuTf6axx lux dS -f daxx
ax

dV +f8baxv mux dS -foa.S Ly dV
s u

+f box,,nuxdS-f bax,, az dV+ IbX.,u,,dV
s r

+ f u dV+ I6aVmu,,dS- (robes,,,,

ay

dV

+5 nu dS - I6a,,,LU"dV+ fy6X uu dV

+f ba,,x lu,, dS -f ba8x ax dV +5SaL mu, dS -f 6Q=» auz dV
s v y

+ f86ax= nu,, dS -fvdats u dV +f6XZ u., dV = 0 (3.72)

which can be rearranged into

f[(&rl + ba m + 6an)u+ (baaI + 6avv m +

(6az2 ! + ba,,v m + 6a,,,, n)u,,] dS

+f(6Xxu,, + 6Xyu + 6X,,u,,)dV
v

C

r aux aY au,, (au auu)
[6axx ax + a

+ 6a,,,,
az

+ daxy
a + ax

+ km( az + ay + 6a,,x(ax + az)1 dV (3.73)

Noting that on the surface

d0x

l + ba,,,, in + ba,,,, n = 60 (3.74)

&a,,x l + ba,,,, in + n = 60,,

and using strain-displacement relations (2.2), we obtain from Eq. (3.73)

fu' 64, dS +f UT bX dV =f eT ba dV (3.75)
ro ro

Hence from Eqs. (3.16), (3.43), (3.46), and (3.75), it follows that

6W* = 6U,,*

= 6U{ +f aT bs dV + f e1T ba dV (3.76)
v ro

where bs = baxx + 6a,,,, + 6a,,,, (3.47)
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Equation (3.76) represents the principle of complementary virtual work,
which states that an elastic structure is in a compatible state of deformation
under a given system of loads and temperature distribution if for any virtual
stresses and forces bu, 64, bX away from the equilibrium state of stress the
virtual complementary work is equal to the virtual complementary strain energy
of total deformation. An alternative name for this principle is the principle
of virtual Forces. Since the linear strain-displacement equations (2.2) were
used to derive Eq. (3.76), the principle of complementary work as stated here
can be applied only to small deflections.

THE PRINCIPLE OF A STATIONARY VALUE
OF TOTAL COMPLEMENTARY POTENTIAL ENERGY

The principle of complementary virtual work can also be expressed in a more
concise form as

b(U1 -I- U*) = 0 (3.77)

where bU* _ -bW* (3.78)

and U,* is the complementary potential of external forces. The subscript a has
been added to emphasize that only the stresses and forces are to be varied.
In calculating the complementary potential of external forces U*, it should be
observed that all forces are treated as variables wherever the corresponding
displacements are specified. The quantity

U* = 41 + U* (3.79)

is the total complementary potential energy of the system. Thus Eq. (3.77)
may be described as the principle of a stationary value of total complementary
potential energy. This principle may also be interpreted as a statement that
"of all statically equivalent, i.e., satisfying equations of equilibrium, stress
states satisfying given boundary conditions on the stresses, those which satisfy
the compatibility equations make the total complementary potential energy U*
assume a stationary value." It can be demonstrated that this stationary value
is a minimum.

CASTIGLIANO'S THEOREM (PART II)

If only one virtual force OP, is applied in the direction of the displacement U,
in a structure subjected to a system of external loads and temperature distribu-
tion, then

bW* = U,SP, (3.80)

From the principle of complementary virtual work it follows that

bull = U, OPr (3.81)
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which in the limit becomes

a U,l =
U'.aPr T=roust

(3.82)

Equation (3.82) represents the well-known Castigliano's theorem (part I1),
generalized for thermal and initial strains. Matrix formulation of this theorem
is discussed in Sec. 7.4.

If instead of virtual force 6Pr we introduce a virtual concentrated moment
dMr, Castigliano's theorem (part 11) becomes

au: -01.
alllr Teconst

where 0r is the rotation in the direction of bMr.

(3.83)

THE THEOREM OF MINIMUM COMPLEMENTARY
STRAIN ENERGY OF TOTAL DEFORMATION

If in a strained structure no external virtual forces are introduced but only
virtual stresses which are zero on the boundaries, the complementary virtual
work is

6W* = 0 (3.84)

and, from the principle of complementary virtual work the complementary
virtual strain energy of total deformation

aQ Ud = 0 (3.85)

where the subscript a has been added to indicate that only stresses are varied.
If the second variation in the complementary strain energy of total deformation
is considered, it can be shown that o0U* = 0 represents the condition for mini-
mum U*. Since the virtual stresses are kept zero on the boundaries, this
theorem can be applied only to redundant structures, for which variation of
internal stresses is possible.

THE UNIT-LOAD THEOREM"

This theorem is used to determine the displacement Ur in a structure for which
the distribution of true total strains is known. These strains will be denoted
by the strain matrix e. If a virtual force tPr is applied in the direction of Ur
so that virtual stresses dar are produced in the structure, then the following
equation is obtained by equating the complementary virtual work to the
complementary virtual strain energy of total deformation:

Ur 8Pr =J a'2' dar dV (3.86)
v
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In a linearly elastic structure bUr is proportional to 6Pr, that is,

bv, = ar 6P, (3.87)

where a, represents statically equivalent stress distribution due to a unit load
(bPr = 1) applied in the direction Ur. The stresses ar must be in equilibrium
only with themselves and with the imposed unit load. Substituting Eq. (3.87)
into (3.86) and canceling out the virtual load 6Pr, we obtain

Ur =J e '-a, dV (3.88)

Equation (3.88) represents the unit-load theorem,10 which states that the dis-
placement Ur in a structure under any system of loads and temperature dis-
tribution is equal to the integral over the volume of the structure of the true
strains e, which include both the initial and thermal strains, multiplied by the
stresses a, equivalent to a unit load corresponding with the required displace-
ment.

The unit-load theorem is particularly useful in calculating deflections on
redundant structures and in determining flexibility matrices as demonstrated
in Secs. 7.3 and 8.1. Furthermore, this theorem forms the basis of the matrix
force method of structural analysis of redundant structures. It should be
noted that since ar must satisfy only the equations of equilibrium, the ar dis-
tributions can be determined in the simplest statically determinate systems.
Clearly if a, can be chosen in such a way that it is equal to zero over much of
the structure, the integration in Eq. (3.88) can be considerably simplified. In
a statically determinate system ar naturally represents the true stress distribution
for a unit load applied in the direction of U.

3.6 CLAPEYRON'S THEOREM

For linearly elastic structures

bU,=bU*=I cr'bedV

=J ET b6 dV
n

cb?' bu dSand bW= 6W* 4X T bu dV+J
a

=fuT bX dV +J uT b dS
v a

(3.89)

(3.90)

The above equations can be deduced from Figs. 3.1 and 3.2 if we note that the
force-displacement and stress-strain diagrams for linear elasticity are represented
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by straight lines. Assuming that body forces, surface forces, and the tem-
perature distribution are all increased from zero to their final values, we have
that

f a7'e dVU; = U* =
2

v

1

= 2 cTa dV (3.91)

and W=W*=2 fvXTudV+2I ftTU dS

2
fUTX dV + 2 f UT4 dS (3.92)

where all matrices refer to their final values. Equations (3.91) and (3.92) are
sometimes referred to as Clapeyron's theorem, and they are used for calculating
strain energy and work in linearly elastic structures.

The complementary strain energy of total deformation for linear elasticity
can be deduced from Fig. 3.3. Hence

U1*=2 f'aTEdV+fvsaTdV+f aTejdV (3.93)

where s = a':;: + auv + alt (3.94)

The first term on the right of Eq. (3.93) represents the complementary strain
energy, while the second and third terms represent the respective contributions
due to thermal and initial strains.

3.7 BETTI'S THEOREM

We shall now consider a linearly elastic structure subjected to two force systems
represented by the matrices Pl and PI1, respectively. The displacements due
to system P, alone will be represented by U1, and those due to Pu alone by
U11. If the system P1 is applied first followed by the system P11, the work
done by external forces is given by

W1,11 = 2P17'U1 + AP1I7UIT + P17,U1I (3.95)

where the subscript I, 11 with W indicates the sequence of application of the
load systems. If the sequence is reversed, the work done by external forces
becomes

W11.1 = aPII7'Ull + IPLTU1 + PIITU1 (3.96)
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In both instances work is stored as elastic strain energy U,, and the amount
of energy so stored must be the same, since the final deformed configuration
in a linear system must be independent of the sequence of load application.
Therefore

U; = W1,U = WTI'l (3.97)

from which it follows that

P,TUII = PIITUI (3.98)

Equation (3.98) is usually referred to as the reciprocal theorem of Betti,
which states that "the work done by the system of forces PT over the displace-
ments U11 is equal to the work done by the system of forces P11 over the dis-
placements U1, where UI and U11 are the displacements due to PI and P11,
respectively."

3.8 MAXWELL'S RECIPROCAL THEOREM

If systems of forces PT and PII used in Betti's theorem consist each of one force,
for example, PI and P2, applied at two different locations, then Eq. (3.98)
becomes

[P1 01
[f12P2] = [0 P2]

1f21P11

liP1f22P2where

f4,f is the displacement in the ith direction
direction. After multiplying out matrices in Eq.

(3.99)

due to a unit force in the jth
(3.99) it follows that

.fit =,f21 (3.100)

or, in general,

Al =.fr,$ (3.100a)

The result expressed by (3.100a) is the well-known Maxwell reciprocal
theorem. It represents the reciprocal relationship for the influence coefficients
which form the elements of flexibility matrices. Thus all flexibility matrices,
and hence stiffness matrices, must be symmetric for linear structures.

3.9 SUMMARY OF ENERGY THEOREMS AND DEFINITIONS

A summary of definitions used in the energy theorems of Chap. 3 is presented
in Table 3.1. In addition, a convenient summary of energy theorems is provided
in Table 3.2.
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TABLE 3.1 SUMMARY OF DEFINITIONS

Symbol Definition Calculated from

W
W
U,
Ud

Fir
CJ*

U,

Ud

Ur*

Ua

U.
U.
U
U*

Work
Complementary work
Density of strain energy
Density of strain energy of tot
Density of complementary str
Density of complementary str

total deformation
Strain energy
Strain energy of total deforma
Complementary strain energy
Complementary strain energy

deformation
Potential of external forces
Complementary potential of e
Potential energy
Complementary potential ene

l deformation
ain energy
ain energy of

tion

of total

xternal forces

rgy

W = J P du
W* = J u dP
U, = a de
Ud = J a de
Ut = J e da
Ud = f e da

U, = J U, dV
Ud = J Ud dV
U, = J Ur dV
Ud = J UQ dV

8U. = -6W
JU. = -6W*

U = U, + U.
U* = U, + U.

TABLE 3.2 SUMMARY OF ENERGY THEOREMS

Theorems based on the principle of virtual
work (virtual-displacements principle)

au,=BW

Theorems based on the principle of com-
plementary virtual work (virtual-forces
principle)

SUQ = 8W

The principle of a stationary value of
total potential energy (principle of
minimum potential energy)

B.U=S(U,+U.)=0

Castigliano's theorem (part I)
MA

JaUr T=const
= P.

The theorem of minimum strain energy

d.U,=0

The unit-displacement theorem

Pr =f,

The principle of a stationary value of total
complementary potential energy (principle
of minimum complementary potential
energy)

SQU*_(5(Ua+U*)=0

Castigliano's theorem (part II)

(aUd*).,
= U raPr =roust

The theorem of minimum complementary
strain energy of total deformation
(applicable only to redundant structures)

d,Ud*=0

The unit-load theorem

J =f.er6rdv
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PROBLEMS

3.1 Derive a general formula for calculating strain energy in terms of stresses for plane-
stress problems.

3.2 Derive a general formula for calculating complementary strain energy of total
deformation in terms of stresses for plane-stress problems.

3.3 A uniform bar of cross-sectional area A is held between two rigid walls as shown in
Fig. 3.5. Young's modulus of the material is E, and the coefficient of expansion is (x. Deter-
mine the complementary strain energy of total deformation when the bar is subjected to a
temperature increase T. What is the strain energy stored in the bar? Comment on your
results.

L

mm-61, FIG. 3.5

3.4 Using Green's identities, show that

Iv
eTa*dV=0

where e = (erx e., ez, e., a,,, ez:)

represents total strains due to a system of external forces applied to a structure and

a* _ (a* a* a* a* a* a* }xa VV zz av vs zm

represents any self-equilibrating stress system in the same structure. (Note: A self-equilibrating
stress system is one in which all surface and body forces are equal to zero.)

3.5 A framework consisting of a single joint connected by three pin jointed bars attached
to a rigid foundation is loaded by forces Pi and P2 (see Fig. 3.6). The cross-sectional areas of
the bars and the framework geometry are as shown. Using the principle of virtual work,
determine the internal forces in the three bars.

1

FIG. 3.6
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3.6 Show, using the principle of complementary virtual work, that if r is the distributed
loading on a uniform cantilever beam (see Fig. 3.7) with constant temperature, then the area
swept by the beam when undergoing deflections due to ii is given by aU7/8Ir.

Swept
oreo

w, Ib/in. FIG. 3.7

3.7 Using the principle of complementary virtual work shown that if m is the distributed
moment on a uniform cantilever beam (see Fig. 3.8) with constant temperature, the tip
deflection is given by aU*/am.

Tip
deflection

in, lb-in./in. FIG. 3.8

3.8 The beam element shown in Fig. 3.9 is subjected to applied moments M1 and M. and
a temperature distribution T, which is constant along the length. The applied moments are
equilibrated by the shear reactions at the two ends. Show that if the shear deformations are
taken into account, the rotation 0, in the direction of M, is given by

y dA03L 12E1(4 + (D)MI + 12EI (2 -
ID)M2 - 2 5'f T

where I = beam length
EI = flexural stiffness (constant)
4) = 12E1/GA,1Q-shear parameter

A, = cross-sectional area effective in shear
G = shear modulus
T = temperature (function of y only)
y = distance from neutral axis of the beam

L L

x

FIG. 3.9

3.9 Calculate the tip deflection of a uniform cantilever beam subjected to uniform loading
,v lb/in., as shown in Fig. 3.10. The effects of shear deformations must be included. The
flexural stiffness is El, the shear modulus is G, and the effective cross-sectional area in shear
is A.
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I
t t t t t t t t f

FIG. 3.10

3.10 Apply the unit-load theorem to determine lateral deflection on the cantilever shown
in Fig. 3.11 at a distance b from the built-in end. The cantilever is loaded by a force W at the
tip. Effects of shear deformations must be included. The stiffness and geometrical data
are the same as in Prob. 3.9.

tw

L FIG. 3.11



CHAPTER 4
STRUCTURAL
IDEALIZATION

The most important step in matrix structural analysis is the formulation of a
discrete-element mathematical model equivalent to the actual continuous
structure. This model is necessary in order to have a system with a finite
number of degrees of freedom upon which matrix algebra operations can be
performed. The formulation of such a model, usually referred to as structural
idealization, is accomplished essentially by equating energies of the continuous
and discrete element systems. For some types of structures this energy equiva-
lence leads to the exact representation by the discrete systems; for others we
are forced to use approximate representations. Structures which are already
made up from elements with discrete attachments, such as trusses or rigid
jointed frames, present no difficulty in the formulation of their discrete models.
If the elements are made up with fictitious boundaries and attachments, exact
discrete-element representations are not possible, and we must resort to the
use of assumed stress or displacement distributions within the elements. The
assumed distributions must be such that when the size of elements is decreased,
the matrix solutions for the stresses and displacements must tend to the exact
values for the continuous system. In this chapter the underlying principles of
structural idealization are discussed. Also the most commonly used idealized
structural elements are described, with special emphasis on those elements
whose elastic and inertia matrix properties are derived in subsequent chapters.

4.1 STRUCTURAL IDEALIZATION

Most engineering structures consist of an assembly of different structural
elements connected together either by discrete or by continuous attachments.
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The size of the elements may vary; at the one end of the scale a single element
may represent a stringer extending over one frame bay in a fuselage shell,
while on the other end such large components as a complete wing structure
may also be regarded as elements. In the latter case, however, because of the
size and complexity of the structure it is customary to refer to such elements
as substructures.

If the structural elements on the actual structure are connected together by
discrete joints, the necessary interaction between individual unassembled
elements is introduced as joint forces or displacements. Pin jointed trusses or
rigidly connected frames are typical examples of structures made up from
components with discrete joints. The interaction forces between the various
elements in a framework structure are represented by discrete joint forces (shear
and axial forces), bending moments, and torques. For these cases the elastic
characteristics of structural elements can be determined accurately using
elementary theories of bending and torsion, particularly for elements which are
long compared with their cross-sectional dimensions. If the assembled frame-
work structure is statically determinate, the equations of statics, i.e., the equa-
tions of equilibrium in terms of forces, are sufficient to determine all the joint
forces, bending moments, and torques. For statically indeterminate (redund-
ant) structures the equations of equilibrium are insufficient in number to
determine all the unknown forces, and therefore these equations must be
supplemented by the equations of compatibility. Alternatively, the equations
of equilibrium can be reformulated in terms of displacements, in which case
there will always be a sufficient number of equations to determine the unknown
displacements (deflections and rotations).

In the case of a framework structure the transition from the differential
equations of continuum mechanics (elasticity) into a set of algebraic (matrix)
operations can be easily interpreted. The differential equations for elasticity
for each structural element can be solved initially in terms of the boundary
values. This gives the element force-displacement relationship or element
displacement-force relationship, depending on the method of solution. The
satisfaction of boundary conditions on adjacent elements leads then directly
to a set of algebraic equations which are used to determine the unknown force
and/or displacement boundary values. Thus it is clear that structures comprising
elements with discrete attachments (see Fig. 4.1) lend themselves ideally to a
structural analysis based on algebraic operations on matrix equations in
which the element forces and displacements may be identified as specific
matrices.

The discrete-element analysis of structural elements which are continuously
attached presents some difficulties. For such elements there is no longer
one-to-one correspondence between the element forces used in the matrix
analysis and the forces in the actual structure, and consequently the analyst
must exercise great care in interpreting the results.
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FIG. 4.1 Example of a discrete-attachment
structure: pin jointed truss.

Continuously attached structural elements are used in many applications;
e.g., aircraft or missile skin panels are attached to other components by bolts
or rivets or are welded to them. Also, in order to obtain a detailed stress
distribution in a large panel attached continuously to the surrounding structure
it may be necessary to subdivide each panel into a number of smaller panels
by a system of grid lines, the intersections of which are referred to as nodes or
nodal points. The smaller panels can then be regarded as structural elements
attached continuously to other surrounding panels (see Fig. 4.2). Furthermore,
a somewhat similar idealization can be used for analysis of solid bodies, where
the body may be regarded as an assembly of solid tetrahedra, and each tetra-
hedron is treated as a structural element.

In continuously attached panels the main difficulty lies in the physical
interpretation of the element forces, since the mechanism of modeling the
continuum mechanics by discrete-element techniques is by no means a simple
procedure. First, the displacements of node points are interpreted as the
actual displacements of the corresponding points on the structure. Second,
the varying stress field in the element must be replaced by an equivalent set of
element discrete forces. These element forces, unlike the case of structural
elements with discrete attachments, have no physical counterpart in the actual
structure, and therefore they must be regarded only as fictitious forces introduced
by the structural idealization. Figure 4.3 shows a thin-walled shell idealized
into an aggregate of triangular panels. In this case the element forces would
be represented by fictitious concentrated forces and moments at the nodal
points formed by the intersection of the grid lines outlining the triangular
plate elements. Another example is shown in Fig. 4.4. A sweptwing root

Assumed grid
lines

Discrete

elements FIG. 4.2 Example of a continuous-attachment
M structure: two-Range spar.
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FIG. 4.3 Thin-walled shell idealized into an
aggregate of triangular panels.

FIG. 4.4 Idealization of a swept-
wing root structure.
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structure is idealized into panel elements representing the skins, ribs, and
spar webs. Although not shown, the actual idealization would also include
any reinforcing members, such as spar caps, rib-to-skin attachment angles,
etc. Here fictitious concentrated forces in the plane of each panel and
acting at points of spar and web intersections would be used as the element
forces.

It is evident from the previous discussion that the structural idealization is
simply a process whereby a complex structure is reduced into an assembly of
discrete structural elements. The elastic and inertia properties of these ele-
ments must first be established before we can proceed with the static or dynamic
analyses of the system.

4.2 ENERGY EQUIVALENCE

The basis for determining elastic and inertia properties of the idealized
structural element is the equivalence of strain and kinetic energies of the actual
continuous element and its equivalent discrete model. To illustrate this
method we shall consider a rectangular plate element formed by the intersection
of grid lines in a flat panel subjected to some general loading, as shown in
Fig. 4.5. We assume first that the element properties will be specified for
twelve deflections and eight rotations. For convenience, both the deflections
and rotations will be referred to as element displacements. The idealized
element has a stress distribution carried over from the surrounding structure
and, in addition, is also subjected to surface forces body forces X, and
temperature T.

The first step in determining the properties of this idealized element is to
assume that the interior displacements u = {ux u, uz} are expressible in terms

/ g 7/
/

_ / 6 t,%,9

/ W7)//

/2 4

/ .11 //

13fi4p ---- /

- - -
19,d' 16

17 /

FIG. 4.5 Typical idealized element in a flat plate.
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of the discrete displacements U = {U1 U2 U20) by the matrix equation

u = aU (4.1)

where a = a(x,y,z) is a function of the position coordinates. Clearly, such a
relationship can be valid only for static stress distributions and for elements
attached to the surrounding structure by means of discrete joints. Only then
will the interior displacements be proportional to U, and a will be a unique
matrix. For continuously attached elements, as in Fig. 4.5, the matrix a is
not unique, since it depends on the global stress distribution in the panel.
Furthermore, for general dynamic problems the matrix a does not exist, even for
elements with discrete attachments. This means that, in general, we can
expect only approximate expressions for the matrix a.

The total strains e can always be obtained by differentiation of Eq. (4.1)
leading to the matrix equation

e = bU (4.2)

Using virtual-work and d'Alembert's principles, virtual work can be equated
to the virtual strain energy, and the following equation is obtained for the
element:

r r
mU + +- kU = P - Q +J aT4 dS + J all dV (4.3)

ti

where m = f pa 'a dV = mass matrix
V

k =f bTxb dV = stiffness matrix

P = {P1 P2 - } = element concentrated forces
r

Q =J bTxTaT dV = equivalent thermal forces
V

J
aTO dS = equivalent concentrated forces due to 0

F

51)

all dV = equivalent concentrated forces due to X

Equation (4.3) is in fact the equation of motion for the idealized element.
For details of its derivation Chap. 10 should be consulted. This equation
indicates in matrix form the relationship between "generalized" forces such as
inertia forces, stiffness or restoring forces, fictitious nodal forces from neigh-
boring elements, equivalent thermal forces, equivalent concentrated surface
forces, and equivalent concentrated body forces. It therefore provides the
mathematical model for a structural element isolated arbitrarily from the
continuous structure. For elements with discrete attachments this idealized



STRUCTURAL IDEALIZATION 55

model is exact for static loading; however, for all other cases only approximate
representations are possible.

For elements with discrete attachments the matrix a is found from the
solution of the boundary-value elasticity problem for specified boundary
displacements. For continuously attached elements we usually determine a by
assuming the form of the displacement distribution. Specifically, a linear
combination of different continuous functions with arbitrary multiplying
constants is selected for the displacements. If the number of constants is equal
to the number of discrete displacements, these constants can be determined
directly in terms of the element displacements; however, if this number is
greater than the number of displacements, we must use the condition of minimum
potential energy to derive additional equations for the constants2v3 (see Sec. 5.13).

When selecting the displacement functions it is desirable, although not
necessary, to ensure compatibility of deflections and slopes on the boundaries
of adjacent elements. This requirement is satisfied provided the distribution
of deflections and slopes on a boundary depends only on the discrete displace-
ments at the end points defining that particular boundary.

The matrix a can also be determined from an assumed stress distribution,
but this involves integration of the strain-displacement equations to obtain the
required displacement relations. In the force method of analysis the flexibility
properties of elements can also be calculated directly from an assumed stress
distribution satisfying the equation of stress equilibrium. Alternatively,
flexibility properties are obtained by inverting stiffness matrices.

The matrix displacement and force methods yield identical results if the
assumptions in deriving the discrete-element properties are identical in both
methods. Different assumptions in deriving the element properties may also
be used in the displacement and force methods of analysis, so that the two
different results bracket the true results by providing upper and lower bounds.
For example, an equilibrium noncompatible stress field in elements would
overestimate the overall structural flexibility, while a compatible nonequilibrium
field would underestimate the flexibility.

As already mentioned before, the assumed displacement functions must be
continuous and should preferably satisfy compatibility of deflections and
slopes on the boundaries. The satisfaction of the stress-equilibrium equation
is also desirable. The choice of the best assumed deflection form is not an
easy one. Melosh226 has proposed a criterion for the monotonic convergence
of the discrete-element solution to be used for selecting element properties. It
appears, however, that such a criterion may perhaps be too restrictive. Bazeley
et al.35 postulated that the only requirement on the assumed functions is that
they be able to represent rigid-body translations and rotations and constant
strain distributions. More work is still required in order to select the best
deflection and/or stress distributions for the calculation of properties of the
idealized elements.
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4.3 STRUCTURAL ELEMENTS

BAR ELEMENT

The pin jointed bar is the simplest structural element. It requires two element
forces for the displacement method (DM) and only one element force for the
force method (FM). This element has no bending stiffness, and it carries
only a one-dimensional stress distribution. In Fig. 4.6 and in all subsequent
figures in this section the element forces for the FM are indicated by solid
arrows while the corresponding reaction forces are shown as dashed-line
arrows.

DM
F

FM FIG. 4.6 Pin jointed bar.

BEAM ELEMENT

For the DM we require four shear forces, two axial forces, four bending
moments, and two torsional moments. All forces are acting at the ends of
the beam. For the FM we require two shear forces, one axial force, two
bending moments and one torsional moment (see Fig. 4.7). Other choices of
reactions and element forces are possible, and it is largely the matter of personal
preference which particular system is used.

DM FM FIG. 4.7 Beam element.

TRIANGULAR PLATE (IN-PLANE FORCES)

The in-plane and bending deformations are uncoupled for small deflections,
and consequently elastic properties can be evaluated separately for the in-plane
and out-of-plane forces. In the DM we use two forces at each vertex of the
triangle, while in the FM it is preferable to select three sets of edge forces, as
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DM
A(

FIG. 4.8 Triangular plate (in-plane forces).

FM

indicated in Fig. 4.8. Other choices of element forces in the FM are also
possible.

RECTANGULAR PLATE (IN-PLANE FORCES)

No. of element forces in DM = 8
No. of element forces in FM = 5
As in the case of triangular plate elements, it is preferable to use edge-force
systems for the FM. Four edge-force systems plus a diagonal system may be
used.

DM FM FIG. 4.9 Rectangular plate (in-plane forces).

TETRAHEDRON

No. of element forces in DM = 12
No. of element forces in FM = 6
Here again the edge-force systems may be used in the FM.

DM FM FIG. 4.10 Solid tetrahedron.
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TRIANGULAR PLATE (BENDING FORCES)

Considering only the bending forces (out-of-plane forces) we have
No. of element forces in DM = 9
No. of element forces in FM = 6

RECTANGULAR PLATE (BENDING FORCES)

For the bending forces only we have
No. of element forces in DM = 12
No. of element forces in FM = 9

DM FM

FIG. 4.11 Triangular plate
(bending forces).

FIG. 4.12 Rectangular plate
(bending forces).

HRENNIKOFF'S PLATE MODEL

For rectangular plates in bending Hrennikoff143 introduced an idealization
based on four edge beams and two diagonal beams having cross-sectional
properties derived from the plate stiffness. Application of this idealized
element in matrix methods has been limited.

FIG. 4.13 Hrennikoff's model for plate in
bending.
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CONSTANT-SHEAR-FLOW PANEL

CONTINUOUS ATTACHMENTS: The constant-shear-flow-panel idealization has
been used extensively in the stress analysis of stressed-skin aircraft structures.
It generally gives excellent results provided the effects of Poisson's ratio can
be neglected.
No. of element forces in DM = 4
No. of element forces in FM = I

I

T-- - FIG. 4.14 Constant-shear-flow panel : con-
DM FM tinuous attachments.

MIDPOINT ATTACHMENTS: The constant shear flows can be replaced by shear
forces applied at the midpoints of the panel sides. This idealization can then
be used in conjunction with the pin jointed bar elements to represent normal
stress capability of the panel.
No. of element forces in DM = 4
No. of element forces in FM = 1

DM FM

FIG. 4.15 Constant-shear-flow panel; mid-
point attachments.

AXIAL-FORCE ELEMENT

This element is used in conjunction with the constant-shear-flow panel to
represent the normal stress capability of the panel.
No. of element forces in DM = 3
No. of element forces in FM = 2

DM FM FIG. 4.16 Axial-force member.
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AXISYMMETRICAL SHELL ELEMENT

The element consists of a truncated cone with distributed edge forces and
moments as the element forces. Tangential forces are also included.
No. of element forces in DM = 8
No. of element forces in FM = 6

DM FM

FIG. 4.17 Axisymmetrical shell element; axisymmetrical loading in-
cluding torsion.

AXISYMMETRICAL TRIANGULAR RING

This element is used in the analysis of axisymmetrical solid rings. Tangential
forces are not included.
No. of element forces in DM = 6
No. of element forces in FM = 5

DM FM

FIG. 4.18 Axisymmetrical ring element;
axisymmetrical loading excluding torsion.



CHAPTER 5
STIFFNESS PROPERTIES
OF STRUCTURAL
ELEMENTS

We have seen in the previous chapter that in order to use matrix methods of
structural analysis, the structure is first idealized into an assembly of structural
elements and that these elements are attached to the adjacent elements at node
points, which may be either the actual joints or fictitious points obtained by
the intersecting grid lines. To determine stiffness characteristics of the entire
assembled structure, which are required in the analysis, we must find stiffness
properties of individual unassembled elements. In this chapter stiffness
properties are developed for the following elements: pin jointed bars, beams,
triangular plates, rectangular plates, quadrilateral plates, and solid tetrahedra.
Stiffness properties of the linearly varying axial-load element and constant-
shear-flow panel are presented in Chap. 6. For other types of elements the
general principles discussed in this chapter may be used to derive the required
stiffness properties.

5.1 METHODS OF DETERMINING ELEMENT
FORCE-DISPLACEMENT RELATIONSHIPS

The fundamental step in the application of the matrix displacement method is
the determination of the stiffness characteristics of structural elements into
which the structure is idealized for the purpose of the analysis. A number of
alternative methods are available for the calculation of force-displacement
relationships describing the stiffness characteristics of structural elements, and
the choice of a particular method depends mainly on the type of element.
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The following methods can be used:

1. Unit-displacement theorem
2. Castigliano's theorem (part I)
3. Solution of differential equations for the element displacements
4. Inversion of the displacement-force relationships

Of these methods, the first one, the application of the unit-displacement theorem,
is undoubtedly the most convenient since it leads directly to the required matrix
equation relating element forces to their corresponding displacements. In the
second method, based on a direct application of Castigliano's theorem (part 1),
the strain energy is first calculated in terms of element displacements and
temperature and then is differentiated with respect to a selected displacement.
The differentiation is repeated for each element displacement in turn, and this
generates a complete set of force-displacement equations, which can then be
formulated in matrix notation. In the third method the solutions of the
differential equations for displacements are used to derive the required stiffness
relationships. Naturally the application of this method is limited to structural
elements for which solutions for displacements are available. I n the fourth
method, the equations for the displacement-force relationships are determined
first, and then these equations are inverted to find force-displacement relation-
ships; however, the force-displacement relationships thus obtained must
subsequently be modified to include the rigid-body degrees of freedom. This
method is discussed in Chap. 6.

5.2 DETERMINATION OF ELEMENT STIFFNESS
PROPERTIES BY THE UNIT-DISPLACEMENT THEOREM

We shall consider an elastic element (Fig. 5.1) subjected to a set of n forces

S = {S1 S2 ... Si St ... (5.1)

and some specified temperature distribution

T = T(x,y,z) (5.2)

The displacements corresponding to the forces S will be denoted by the column
matrix

u = {u1 U2 ... u{ u! ... (5.3)

To determine a typical force Si we can use the unit-displacement theorem.
Hence

Si =f e,!"a dV (5.4)
v
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mo. 5.1 Elastic body or structure subjected to
static loading.

where e{ represents the matrix of compatible strains due to a unit displacement
in the direction of S; and a is the exact stress matrix due to the applied forces
S and the temperature distribution T. The unit displacements can be applied
in turn at all points where the forces are impressed, and hence

S =f dV (5.5)
v

where E = Ll S2 ... Ei E, ... En]

Since we are dealing with a iinear system, the total strains e must be expressed
by the relationship

e = bu (5.7)

where b represents a matrix of the exact strains due to unit displacements u.
Substituting Eq. (5.7) into (2.14), we have

a = xbu/+ xTaT (5.8)

Hence from Eqs. (5.5) and (5.8) the element force-displacement relationship
becomes

S =J eTxb dV u +J !TXTaT dV
v v

or S=ku+Q

where k =f eTxb dV

represents the element stiffness matrix and

Q =J ETxTaT dV
U

(5.9)

(5.10)

(5.11)

(5.12)
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represents thermal forces on the element when u = 0. If the temperature
throughout the element is constant, then

Q = hn.T (5.13)

where h =J ETxq. dV (5.14)

may be described as the thermal stiffness matrix. Hence from Eqs. (5.10)
and (5.13) we have

S = ku + haT (5.15)

The matrix a representing compatible strain distribution can be evaluated
without any appreciable difficulties, even for complex structural elements. On
the other hand, evaluation of the matrix b, representing exact strain distribu-
tions, is often exceedingly difficult, if not impossible. In cases for which no
exact strain distribution can be found approximate procedures must be used.
This requires determination of approximate functional relationships between
strains and displacements. Naturally, the degree of approximation then
depends on the extent to which the equations of equilibrium and compatibility
are satisfied. One possible approach is to select the matrix b in such a way
that it will satisfy only the equations of compatibility. Denoting this ap-
proximate matrix by b, and noting that e = b, we obtain from Eq. (5.11)

k dV (5.16)
ro

For convenience in subsequent analysis Eq. (5.14) may be rewritten as

h =f bTXr dV (5.17)
ro

A typical application of Eqs. (5.16) and (5.17) will be illustrated on the
pin jointed bar shown in Fig. 5.2. It can be shown that the displacement ux

FIG. 5.2 Pin jointed bar element.
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along the longitudinal axis of the bar is given by

u¢ = u1 + (u2 - u1)
x` (5.18)

where ul and u2 are the end displacements at x = 0 and x = 1, respectively.
From Eq. (5.18) it follows that

au I
ex. T2 (u2 - ul)

u21Lul
(5.19)

It should be noted that in this case the strain distribution given by Eq. (5.19)
is not only compatible but also exact. Hence

b=b[-1 1] (5.20)

Since the pin jointed bar is a one-dimensional element for which

x = E (2.54)

XT = -E (2.55)

the stiffness matrix k, determined from Eq. (5.16), becomes

k=J
tl

^1 [-
o l[ 1]/

AE[

J1 -1 1

I 1]Adx

(5.21)

where A represents the cross-sectional area of the bar.
Eqs. (5.20) and (2.55) into (5.17) gives

Similarly, substituting

h=-Jot '[-']E-4dx=EA[
1]

(5.22)

The complete force-displacement relationship can now be written as

[S2] 1EL-1 1] [u2] +
AEaT[-1] (5.23)

If u1 = u2 = 0 and the element is subjected to a temperature change T, then
S1 = AEaT, and S2 = -AEaT, which according to the sign convention in
Fig. 5.2 implies that both forces are compressive.
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5.3 APPLICATION OF CASTIGLIANO'S THEOREM
(PART I) TO DERIVE STIFFNESS PROPERTIES

Applying Castigliano's theorem (part I), as given by Eq. (3.64), to the structural
element in Fig. 5.1, we have

Si
a U

(5.24)
l But I'=CgR9t

By varying the subscript i from 1 to n we obtain a set of n equations relating
the element forces St to their corresponding displacements ui. Symbolically
this can be represented by

-(8Utl ()S
au Tnconst

5.25

where the strain energy U. must of course be expressed in terms of u.
Using now the results of Chap. 3, we have

Ut=2 feTadv

=
2

1(eT_ erT)(xe + xraT) dV

=
2

y(eTxe + eTxz.aT - er7xe - eTTxraT) dV (5.26)

From Hooke's law

a=xe+xraT
it follows that

e=x-la-x-'x1.aT
= E+er

Hence xer = -x7.aT (5.27)

Substituting now Eq. (5.27) into (5.26) and noting that U; is a 1 x I matrix,
we obtain

Ut = f (eTxe + 2eTXTxT + erTxer) dV (5.28)
2 1

When we use the strain-displacement relationship

e = bu

the strain-energy expression becomes

feT7xeTUt = fU7'b''xbu dV + J uTb7'xTc T dV + dV
2

(5.29)
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Hence

S
=(au{)

=J bTxb dV u -}-J bTxTa.T dV (5.30)
aU l'=consL v v

which agrees with the result obtained by the unit-displacement theorem when
b=b.

5.4 TRANSFORMATION OF COORDINATE AXES: a MATRICES

In order to determine the stiffness property of the complete structure, a common
datum must be established for all unassembled structural elements so that all
the displacements and their corresponding forces will be referred to a common
coordinate system. The choice of such a datum is arbitrary, and in practice
it is best selected to correspond to the coordinate system used on the engineering
drawings, from which coordinates of different points on the structure can easily
be found.

Since the stiffness matrices k and h are initially calculated in local coordinates,
suitably oriented to minimize the computing effort, it is necessary to introduce
transformation matrices changing the frame of reference from a local to a
datum coordinate system. The first step in deriving such a transformation is
to obtain a matrix relationship between the element displacements u in the
local system and the element displacement 6 in the datum system.
relationship is expressed by the matrix equation

This

u = X6 (5.31)

where X is a matrix of coefficients obtained by resolving datum displacements
in the directions of local coordinates. It will be shown later that the elements
of X are obtained from the direction cosines of angles between the local and
datum coordinate systems.

If virtual displacements 86 are introduced on an element, then, from (5.31),

Bu = X Oii (5.32)

Since the resulting virtual work (a scalar quantity) must obviously be inde-
pendent of the coordinate system, it follows that

BUTS = BUTS (5.33)

where refers to forces in datum system corresponding to the displacements
u. Substituting Eq. (5.32) into (5.33) gives

86T(3` - ?7'S) = 0 (5.34)

and since Bu's are arbitrary, we must have that

S-XTS=0 (5.35)
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1139-I

FIG. 5.3 Pin-jointed bar dis-
placements in local and datum
coordinate systems.

1139-2

By use of Eqs. (5.15), (5.31), and (5.35) the following element force-displacement
equation is obtained in datum system:

9=ku+fiaT=ku+Q
where k = an'kX

h = ,Th
Q = JIThaT = ATQ

(5.36)

(5.37)

(5.38)

(5.39)

The formulation of the transformation matrix X will be illustrated for a
pin jointed bar element orientated arbitrarily in space, as shown in Fig. 5.3.
The displacements in local coordinates can be related to those in datum
coordinates by the equations

u = lpQUSp 2 + mpgu3n-1 + npouaa
(5.40)

U, = mDQu39-1 + 11DOu39

where and n.,, represent direction cosines of angles between the line
pq and ox, oy, and oz directions, respectively. Equations (5.40) can be arranged
in matrix notation as

U3V-2

[u,, /IQ in., n., 0 0 001

uQ]-[0 0 0 1., in., n
(5.41)
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Hence the transformation matrix X is given by

a=
IIra m,,,, 0 0 0

0 0 0 nlwj
Substitution of Eq. (5.42) into (5.37) and (5.38) leads finally to

-ko koJIEC ko -ko
IIn 2

Inamra Ivanna

where ko = m,,,,Inq mna2 mnannv

n,, , nl,,m,w

nin

z

(5.42)

(5.43)

(5.44)

and fi = AE{!Q mrw np -1pq -n. 2} (5.45)

Thus the matrix transformation given by Eq. (5.37) changes a 2 x 2 stiffness
matrix k in a local coordinate system, measured along the length of the bar,
into a 6 x 6 stiffness matrix k in the datum system. Similarly, the trans-
formation given by Eq. (5.38) changes a 2 x I matrix h into a 6 x 1 matrix fi.

5.5 PIN-JOINTED BAR ELEMENTS

The stiffness matrix k and thermal force matrix Q for a pin jointed bar element
were derived in Sec. 5.2 using the unit-displacement theorem. An alternative
method of deriving these matrices using Castigliano's theorem (part 1) is
illustrated in this section.

A pin jointed bar (Fig. 5.2) is a one-dimensional element for which

e x = [-1 l ]{u1 u2} (5.19)

sax =
E

[- I I ]{u1 u2} (5.46)

x = E (2.54)

XT = -E (2.55)

el. = c T (5.47)

Therefore, from Eq. (5.28) it follows that

U, = I rE(ua ,z u1)z -2 u2 1
U1

EaT + Ea2T2] dV
2 ,,L

= ZE [(u2 - u1) - OCTI12 (5.48)
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Application of the Castigliano's theorem (part 1) to Eq. (5.48) leads to equations
for the element forces

au, AE
S1

= au = 1 (ul - uz) + AEY.T

W, AESz _
au

_
1

(-u,+uz)-AEaT
z

which can be combined into one matrix equation

[S2] = AE[-1 [u3] +
AExT[-1]

1

(5.23)

This agrees with the previously derived force-displacement relationship in Eq.
(5.23).

In deriving the force-displacement relationship (5.23) we have used a local
coordinate system. The detailed calculation of the stiffness properties in an
arbitrary datum system, using local system stiffnesses, was presented in Sec. 5.4.

5.6 BEAM ELEMENTS

The beam element will be assumed to be a straight bar of uniform cross section
capable of resisting axial forces, bending moments about the two principal
axes in the plane of its cross section, and twisting moments about its centroidal
axis. The following forces are acting on the beam: axial forces S, and S7;
shearing forces S, S3, S8, and S9; bending moments S6, Se, S,,, and S12; and
twisting moments (torques) S4 and S10. The location and positive direction
of these forces are shown in Fig. 5.4. The corresponding displacements
u...... u12 will be taken, as before, to be positive in the positive directions of
the forces. The position and attitude of the beam element in space will be
specified by the coordinates of the pth end of the beam and by the direction
cosines for the x axis (pq direction) and the y axis, both taken with respect to
some convenient datum coordinate system, the latter being required to locate
the directions of principal axes of the cross section.

The stiffness matrix for a beam element is of order 12 x 12, but if the local
axes are chosen to coincide with the principal axes of the cross section, it is
possible to construct the 12 x 12 stiffness matrix from 2 x 2 and 4 x 4 sub-
matrices. It is obvious from the engineering bending and torsion theory of
beams that the forces S, and S7 depend only on their corresponding displace-
ments; the same is true of the torques S4 and S10. However, for arbitrary
choice of bending planes the bending moments and shearing forces in the xy
plane would depend not only on their corresponding displacements but also on
the displacements corresponding to the forces in the xz plane. Only if the ;y
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S8 FIG. 5.4 Beam element.

5

S2

and xz planes coincide with the principal axes of the cross section can the
bending and shear in the two planes be considered independently of each other.

In order to demonstrate the third method for obtaining force-displacement
relationships, the stiffness properties for a uniform beam element will be derived
directly from the differential equations for beam displacements used in the
engineering beam theory. The stiffness coefficients and thermal loads derived
from these equations will be exact within the limits of the assumptions in the
general engineering theory of beams subjected to loads and temperature gradi-
ents. Since the bending planes xy and xz will be assumed to coincide with
the principal axes of the cross section and the ox axis will coincide with the
centroidal axis of the beam, all forces can be separated into six groups, which
can be considered independently of each other. These groups will now be
considered, and the differential equations for each group will be derived. The
temperature distribution through the beam cross section will be assumed not
to vary along the length of the beam.

AXIAL FORCES (S1 AND S,)
The differential equation for the axial displacement u of the uniform beam
shown in Fig. 5.5a is

Sl = -(du - ccT.)EA (5.49)

where T,,, = A fTdA (5.50)
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(0)
S

(b)

FIG. 5.5 Axial forces SI and S7.

Equation (5.49) can be integrated directly, so that

SIX = -uEA + aT,,,EAx + CI (5.51)

where CI is a constant of integration. We shall assume that the left end of
the beam at x = 0 has displacement u, while the displacement is zero at x = 1.
Hence

CI = S11 - .TEA1

Using Eqs. (5.51) and (5.52), for x = 0 we get

S, = IA
uI + EAaT,,,

Also from the equation of equilibrium in the x direction it follows that

(5.52)

(5.53)

Si = -S7 (5.54)

Algebraic interpretation of the force-displacement relation S = ku + Q can
be used to define individual stiffness coefficients kit and the thermal forces Qi.
For example, kii represents the element force Si due to unit displacement u,
when all other displacements and the element temperature are equal to zero.
The thermal force Qi is equal to the element force S, when all displacements
are equal to zero and the element is subjected to a temperature change T.
Hence

kI, _
(S) _ EA

(5.55)
u1 Leo /

=rS,) -EA
and k7I ` (5.56)

U1 7'-0 /

while all other coefficients in the first column of k are equal to zero. The
thermal loads QI and Q7 are then found from

Q1 = P1.2 (5.57)

and Q7 = (SO.-0 = -P..o. (5.58)

where PT., = EAaT,,, (5.59)
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Similarly, if u, = 0 and we allow u7 to be nonzero (see Fig. 5.5b), it can be
shown, either from symmetry or from the solution for u that

EA
k77 (5.60)

TWISTING MOMENTS (S4 AND S10)

The differential equation for the twist 0 on the beam (see Fig. 5.6a) is

d0= -GJS (5 61)4
dx

.

where GJ is the torsional stiffness of the beam cross section. Integrating Eq.
(5.61), we get

Sax = -GJO + C, (5.62)

and then by using the boundary condition 0 = 0 at x = 1 we find that the
constant of integration C1 is given by

C, = S41 (5.63)

Since 0 = u4 at x = 0, it follows from (5.62) and (5.63) that

GJ
S4 =

1
u4 (5.64)

Using the equilibrium condition for the twisting moments, we have

S10 = -S4

Hence

and

ka.a = J
(Sal

=
GJ

u4 Tn0 I

S10 -GJ
k10,4 = _

U4 T_o 1

(5.65)

(5.66)

(5.67)

while all other coefficients in the fourth column of k are equal to zero. Since
the twisting moments S4 and S10 are not affected by temperature, it follows
that

Q4 = Q10 = 0

S4

"4'0

(0)

(b)
010

$10

FIG. 5.6 Twisting moments S4 and S10.

(5.68)
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Similarly, if u4 = 0, as shown in Fig. 5.6b, it can be demonstrated that

k1o.1o =
GJ

(5.69)

SHEARING FORCES (S2 AND S8)
The lateral deflection v on the beam subjected to shearing forces and associated
moments, as shown in Fig. 5.7a, is given by

v=Vb+v, (5.70)

where vb is the lateral deflection due to bending strains and v, is the additional
deflection due to shearing strains, such that

dc, -S2
(5.71)

dx GA,

with A, representing the beam cross-sectional area effective in shear. The
bending deflection for the beam shown in Fig. 5.7a is governed by the differential
equation (see Boley and Weiner)

2

El,
dx2 =

Sex - SO -
MT,

where MT= =J aETy dA

From integration of Eqs. (5.71) and (5.72) it follows that
3 2 2

-fElzv =6 -2 - M2zx Cl
_

GA
X + C2

8

(5.72)

(5.73)

(5.74)

where C, and C2 are the constants of integration. Using the boundary condi-
tions in Fig. 5.7a,

dv_A.__-S2 atx=0,x=1 (5.75)
dx dx GA,

v=0 atx=1 (5.76)

(b) no. 5.7 Shear forces S, and S8.
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Eq. (5.74) becomes

S2x2 SOx2 MTLx2 S2,Dx12 1352
EI=v=

6 2 2 12
+(1

12

where Se = 221- MTs

12EI.
and

= GA l28

(5.77)

(5.78)

(5.79)

It should be noted here that the boundary condition for the built-in end in the
engineering theory of bending when shear deformations vs are included is
taken as dv,,fdx = 0; that is, slope due to bending deformation is equal to zero.

The remaining forces acting on the beam can be determined from the equa-
tions of equilibrium; thus we have

S8 = -S2

and S12 = -Se + S21

Now at x = 0, v = u2i and hence from Eq. (5.77)

U2 + (D)
/3S2

12EI=

Using Eqs. (5.78), and (5.80) to (5.82), we have

k2 2 = (S2 =12EIs
u2T_o (1 + (U)13

(S6 = S2/ W.k0,E = _
u2 Ta0 2u2 T.o (1 + 4))/2

(S, -12EI,
k6.2 = u2 TQ0= (1 + '1)13

=
S12 _ Se + S21 6EI=

kl2'z
\ u2'T=0 U2 T=0 (1 + 1)l2

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

while the remaining coefficients in the second column are equal to zero. The
thermal forces Q can be obtained from the condition u = 0, so that

Q2 = 0

Q6 = /(S6)um0 = -MT.
Q8 = lS8)u-0 = 0

Q12 = (512)u-0 = MT.

(5.87)

(5.88)

(5.89)

(5.90)
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Similarly, if the left-hand end of the beam is built-in, as shown in Fig. 5.7b,
then by use of the differential equations for the beam deflections or the condition
of symmetry it can be demonstrated that

k =k = 12EI=
8,8 2,2

(1 + (D)13

- 6EIzk128=-k82=(I +x)12

(5.91)

(5.92)

BENDING MOMENTS (SB AND S12)

In order to determine the stiffness coefficients associated with the rotations
ue and u12i the beam is subjected to bending moments and the associated shears,
as shown in Fig. 5.8a and b. The deflections can be determined from Eq.
(5.74), but the constants C1 and C2 in these equations must now be evaluated
from a different set of boundary conditions. With the boundary conditions
(Fig. 5.8a)

v= 0 at x= 0, x= 1 (5.93)

and
dv dv8 S2

dx dx GA,

Eq. (5.74) becomes

at x = 1 (5.94)

EI,v = 6 (x3 - 12x) + ZT (Ix - x2) -I- 28 (Ix - x2)

and
6S8 6MT,

S2=(4+(D)1+(4+(D)1

(5.95)

(5.96)

As before, the remaining forces acting on the beam can be determined from the
equations of equilibrium, i.e., Eqs. (5.80) and (5.81).

U2=0

S2
'- It U6

52

a2=0 12 512

U6= 0
56

(b)

Se
u8zo

012=0

U8=0

FIG. 5.8 Bending moments Se and S,2.
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Now at x = 0

dun _ du dua
= u6

dx dx dx

so that

_ S6(l + (D)! MTZ(l + (D)!
u9

EI;(4 + (D) + E4(4 + (D)

Hence, from Eqs. (5.80), (5.81), (5.96), and (5.97)

(S6)7' (4 + (D) El,
k6.6

u6 =0 (1 + CD)!

Se Sz
k6.6= _- (u6

Z'=0_

u6 TO
6EIa

(1 + (D)!2

77

(5.97)

(5.98)

(5.99)

S1E S6+S2! (2-C)EIz
k12,6 = _ _ (5.100)

( U6 T-p u6 T=o (1 + (D)!

if the deflection of the left-hand end of the beam is equal to zero, as shown
in Fig. 5.8b, it is evident from symmetry that

(4-+-C)E4
k12.12=k6.6= (1 -+-(D)1

(5.101)

SHEARING FORCES (Ss AND S9)

The stiffness coefficients associated with the displacements u3 and u9 can be
derived directly from previous results. It should be observed, however, that
with the sign convention adopted in Fig. 5.4 the directions of the positive
bending moments in the yx and zx planes are different. This is illustrated
clearly in Fig. 5.9, which shows that the positive direction of the bending
moments S6 and S11 is opposite to that of S6 and S12; it is therefore evident

Cs6

(0)

$3

s5 ,s> >
(b)

FIG. 5.9 Sign convention for shear forces and
bending moments.
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that

k3.3 = -k2.2 (5.102)

k5.3 = -ka,2 (5.103)

k9,3 = k8,2 (5.104)

k11.3 = -k12.2 (5.105)

k9,9 = k8.8 (5.106)

k11,9 = -k12.8 (5.107)

Q3 = 0 (5.108)

Q5 = MT" (5.109)

Q9 = 0 (5.110)

Q11 = -MT,
r

(5.111)

where MT dA (5.112)=f.,
aA

In Eqs. (5.102) to (5.107) it has been assumed that the cross section has the
same properties about the z and y axes; however, when the complete 12 x 12
stiffness matrix is assembled, different values of I and A3 in the two bending
planes must be allowed for.

BENDING MOMENTS (S5 AND S11)

Here the same remarks apply as in the preceding section; thus we have

k5.5 = k5,5 (5.113)

k8.5 = -k8.5 (5.114)

k11,5 = k12,6 (5.115)

The results obtained in these subsections can now be compiled into a matrix
equation relating the element forces to their corresponding displacements in
the presence of temperature gradients across the beam cross section. This
relationship is given by
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where 0,,_ 12AE/z=24(l +y)Ar
(/)2

z

and 1), =GAL12 = 24(1 +
v)

A r )s:

80

(5.117)

(5.118)

represent shear-deformation parameters. If r,// and the ratios of radius
of gyration to element length, are small by comparison with unity, as is the
case with a slender beam, both (v and 1, can be taken as zero in Eq. (5.116).
This leads then to a force-displacement relationship in which the effects of
shear deformations are neglected.

For two-dimensional problems, the beam elements need only six forces and
six displacements. We use the numbering system shown in Fig. 5.10, and it
follows from the previous results that the stiffness matrix for these cases becomes

- EA

/

0

k=

Q -

0

- EA
I

0

0

MT. J

12EI,
/'(I + (Dr)

6E1, (4 + (D.)EI,
!s(I + /(I +

0 0
EA

I

-12EI, -6E13

°
12E,

Ie(+ 1,) /z(+ vv) /3(1 +'D,)

6EI, (2 - (D,)E1, -6E1, (4 + ',)EI,
/1(1 + m,) /(1 + (D,) ° /$(1 + (D,) /(1 + (D,)

Symmetric

(5.119)

(5.120)

If the shear deformations are neglected, that is, (D., = 0, the stiffness matrix in
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(5.119) simplifies to

A!2

f 2 Symmetric
0 12

El 0 61 412_ l
k (5.121)

13 A12
0 0 A12

_
I. I.

0 -12 -61 0 12

L 0 61 212 0 -6l 412]
The matrix equation relating displacements in the local coordinate system

to those in the datum system

u = au (5.122)

can be derived, as before, by resolving element displacement vectors in one set
of coordinates into displacements in another set. Thus it can easily be demon-
strated that for a single beam element shown in Fig. 5.4, Eq. (5.122) is of the
form

U1

U2

U3

U4

U8

U6

U7

U8

U9

U10

U11

where

X02
----------

------- I ---------
i iaox

0 0 0 A09

2Loz

A02 = 1ot m02 n.]

A01, - [Jav may noj

A02 = [I moz no2]

Ul

U2

U3

U4

115

uo

U7
(5.123)

u8

fig

ulo

u11

(5.124)

(5.125)

(5.126)
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represents matrices of direction cosines for the ox, oy, and oz directions, res-
pectively, measured in the datum system z, y, and z, and u1, ... , u12 represent
element displacements in the datum system. Hence the transformation matrix
a is given by

Aff ov

noz

0

i0

0

"OX

Aov

A05

aoa

"ox

0 ao

- ao=

(5.127)

For two-dimensional problems the corresponding transformation matrix A
becomes

I,y mo. 0 0 0 0

I", mo,, 0 0 0 0

X1 0 0 1 0 0 0 I (5.128)

0 0 0 IIx m'.' 0

0 0 0 10 nlov 0

0 0 0 0 0 1

where the numbering system corresponds to displacement numbers in Fig. 5.10.

4y

no. 5.10 Beam element for two-dimensional
structures.
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5.7 TRIANGULAR PLATE ELEMENTS (IN-PLANE FORCES)

In triangular plate elements the boundaries are attached continuoulsy to the
surrounding structure, and consequently no exact stiffness relationships can be
derived, as explained in Chap. 4.

The assumed displacement variation will be taken as32a

UX = C1X + C2)' + C8 uY = C4X + C5)' + C6 (5.129)

where the six arbitrary coefficients c1, . . . , cg can be found from the displace-
ments of the three vertices of the triangle (see Fig. 5.11). Using the boundary
conditions

uX = u1 and uY = u2 at (x1,),1)

ux = u3 and uY = u4 at (x2,y2)

uX = u5 and uY = u6 at (x3,y3)

(5.130)

in Eqs. (5.129) to evaluate the unknown coefficients we can show that

um = 2A {[ 32(x - x2) - x32V y2)]u1 + [-)131(x - X3) + x31(y - }-3)]u3
128

+ [y21(x - x1) - x21(y - y1)]u5} (5.13 1)

uY = 2A {[y32(x - x2) - x32(y - )'2)]u2 + [-y31(x - x3) + x31(y - y3)]u4
123

+ [y21(x - x1) - x21(y - y1)]u3} (5.132)

where 2A123 ='x32)'21 - x21)'32
= 2(area of the triangle 123) (5.133)

and xt5=xi-x! y:f=y;-yJ (5.134)

From Eqs. (5.131) and (5.132) it follows that the assumed displacements along
any edge vary linearly, and they depend only on the displacements of the two
vertices on the particular edge; this ensures the satisfaction of the compatibility
of displacements on two adjacent triangular elements with a common boundary.

Fto. 5.11 Triangular plate element.
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1.0 FIG. 5.12 Displacement distribution in a tri-
angular plate due to it., = 1.

A typical displacement distribution due to u3 = 1 with all other displacements
kept zero is shown in Fig. 5.12.

Equations (5.131) and (5.132) can now be used to find the relationship
between the total strains ezx, e5b, and ex and the six displacements u1, . . . , us.

Differentiating these equations, we have

e =bu

all,

ax

where e = {e. e55

u = {u1 U2

arr
0 -x32 0 x31 0 -x91

ay 2A133

aui all,

Lay + ax

2A123
0 -x32 0 x3b= 1

1

n1

}132 0 -y31 0 y31 0

-x32 y32 x31 -y31 -x21 Y21

.. us}

Y32 0 -.Y31 0

yY32 x31-x32

Y21

0

-x21

us

U3

114

Its

Lu9J

(5.135)

(5.136)

(5.137)

(5.138)

(5.139)

Equation (5.139) indicates that the assumption of linearly varying displace-
ments within the triangular element leads to constant strains, and hence, by
Hooke's law, it also leads to constant stresses. The stress field satisfies the
equations of strain compatibility, and since the stresses are independent of x
and y, the stress-equilibrium equations are satisfied identically. The total
strains e can now be substituted into Eq. (2.24) to give the stress-displacement
relationship

31
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The stiffness matrix k and thermal stiffness It can be found from Eqs. (5.16)
and (5.17) using matrices x and XT for the two-dimensional stress distribution.
The evaluation of integrals for k and h presents no difficulty since none of the
matrices involved is a function of the x and y coordinates; the matrix products
bTxb and bTXp can be taken outside the integration sign, and the resulting
integrals are then equal to the element volume A12,t, where t is the plate thick-
ness. For convenience of presentation the stiffness matrices k can be separated
into two parts, so that

k represents stiffness due to normal stresses and k, represents stiffness
due to shearing stresses. The two component matrices, as derived from Eq.
(5.16), are given by

f yn" 1
X3II$

k =
E'

a
4A1130 - N$)

Er
k'

84$3(1 + v)

-y32y31 1'7C32y31 . Y31$

Symmetric

vy32X31 -X38X31 -v'y31X31 X312

Ya3YII1 PX33y31 Ya1y81 ?'X31y21 Y212

L-vy37Xa1 ' X38x31 ' v'y81x,1 -X81X21 -1y81X81 x818

X3II$

1-X38y38 y3II$ Symmetric

-X31x31 y32Xa1 1X3,$

'TXa1y31 )'?1$X3ay31 -y18y31

X32XII1 y32X21

L-X38y31 - y38ya1

'TX31X81 :ya1X81 '. X818

',x31y81 -T_y31y81 xIIly81 y91$

Similarly, from Eq. (5.17) the thermal stiffness h becomes

-y32

Et

h 2(1 - v)

x32

Y31

-x31

-y21

x211

(5.141 a)

(5.141 b)

(5.142)

So far no restriction has been placed on the orientation of the local coordinate
system; however, when calculating the transformation matrix X for a triangular
panel, it is preferable to select the oy direction parallel to, or coincident with,
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u39

53p-2

Us
u3r-2

FIG. 5.13 Triangular plate displacements in local and datum
coordinate systems.

the edge pq (edge 1,2), coinciding also with the direction of displacements u2
and u4 (see Fig. 5.13). The direction cosines of the edge pq (direction from p
to q) can be specified by the matrix

Xv, = [lq, m., np,] (5.143)

whose elements are determined from the coordinates of p and q, that is,

l_xa-xr_x,p
(5.144)

dv, dv,

Ya - Yv Yav
(5.145)

d,,, dv

Za - zv Zav (5.146)
dva dva

where dn, _ (Xav2 + Yav2 + gar2)} (5.147)

In addition, direction cosines for a direction perpendicular to pq in the plane
of the triangle are required. To find these direction cosines a perpendicular
to pq is drawn from the vertex r, and the point of intersection of this perpen-
dicular with the line pq is denoted by t. The coordinates of the point t in the
datum frame of reference can be expressed as

(xv + lvadvt) Yv + mvadva iv + nvadvt)
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where d,, is the distance from p to t. Now the direction cosines of the direction
tr are given by the matrix

Atr = [1tr mfr ntr]

_ [(X, - Xn - 1,w"nt) (Yr - YP - mnadnt) (2r - ZP - nPUdPt)]
dtr

1 [(It, - 1no"nt) (Yrn - m,ad,t) (2rn - nnad,t)] (5.148)
dtr

The condition that pq is perpendicular to tr is expressed as

1naltr + n,,,,n,, = 0 (5.149)

Hence, from Eq. (5.148)

1na(xrn - lnadnt) + m,,,,V'r, - mdnt) + n.(-f,., - nPOdnt) = 0 (5.150)

Solving Eq. (5.150) for d,1, and noting that mna2 + 1, we get

d,,t = 1 narrv + mngYr, + (5.151)

The length of the perpendicular dl, can now be determined from

der = (Xrn2 + YrP2 + 2rn2 - d,t2)j (5.152)

and the direction cosines in Eq. (5.148) can be found from

1tr = XrP
- 1 P"d' 1 (5.153)
dir

mtr _ m,,dnt (5.154)-
dtr

ntr Zrn - (5.155)
dtr

Finally the transformation matrix A can be constructed using the direction
cosines matrices A,,, and A,,. Resolving displacements in the two frames of
reference, local and datum, leads to the following matrix relationship:

u3P-2

u3P-1
U A 0 0l t r 1

u3n
U2 Ana 0 0

i13a-2
U3 0 Atr 0

u3a-1 (5.156)
114 0 A,a 0

113q

115 0 0 Alr
u3r-3

L11n I
0 0 Ana_

u3r-1

u3r _I
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where us,72, ... represent nodal displacements in the datum coordinate system
(see Fig. 5.13). Hence

Air 0 0

Aq 0 0

a=
0 )'tr 0

0 a3 0

0 0 7 er

L 0 0 A,W

where the submatrices
respectively.

Xtr

(5.157)

and X. are given by Eqs. (5.148) and (5.143),

5.8 RECTANGULAR PLATE ELEMENTS (IN-PLANE FORCES)

LINEAR-EDGE-DISPLACEMENT ASSUMPTION

The origin of the local coordinate system will be taken at the lower left corner
of the rectangle, as shown in Fig. 5.14, and to simplify subsequent analysis
nondimensional coordinates

= x and 77 =-i (5.158)
a

will be introduced, where a and b are the dimensions of the rectangular plate.
The element displacements are represented by the displacements at the four
corners. There are eight displacements ul, u2, . . . , u8, and their positive
directions are the same as the positive directions of the x and y axes, as indicated
in Fig. 5.14.

Simple displacement functions which satisfy the assumption of linearly
varying boundary displacements may be taken as10.27

uX = c1 + c3i + c4 (5.159)

'J.V"?

a

b

11.O ui

° Fto. 5.14 Rectangular plate element.
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and uy = Cg + 0777 + C8 (5.160)

where the arbitrary constants c1, . . . , c8 are determined from the known
displacements in the x and y directions at the four corners of the rectangle.
Thus, the assumed displacement distribution is represented by a second-degree
surface, where for constant values of (or 77) the variation of displacement in
the direction of 77 (or ) is linear.

The following boundary conditions are used to evaluate the unknown
constants C1, . . . , C8:

ux = u1 and u = u8 at (0,0)
ux = u8 and u = u4 at (0,1)

ux = u5 and u = u6 at (1,1)
ux = u7 and u, = u8 at (1,0)

(5.161)

Substituting these boundary values into the equations for displacements, we
determine the unknown constants cl, . . . , c8; hence

U. = (1 - )(1 - 7])u1 + (1 - )r7u3 + E77u5 + (1 - rJ)u7 (5.162)

uv = (1 - )(l - 11)u2 + (1 - )7iu4 + 71u6 + (1 - rl)u8 (5.163)

Examining the form of Eqs. (5.162) and (5.163), we can see that the distribution
of the ux and uv displacements along any edge is linear and that it depends only
on the element displacements of the two corner points defining the particular
edge. Thus, the assumed form of displacement distribution ensures that the
compatibility of displacements on the boundaries of adjacent elements is
satisfied. A typical displacement distribution due to u8 = I while all other
element displacements are kept zero is shown in Fig. 5.15.

The total strains corresponding to the assumed displacement functions can be
obtained by differentiation of Eqs. (5.162) and (5.163). Noting that

e

aux I aux
(5 164)

x0

e

ax

au
a a
1 aue,

.

(5 165)"
ay ba .

FIG. 5.15 Displacement distribution in a
rectangular plate due to ua = 1.
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aux all, _ 1 all. 1 au
and ba7+Qa (5.166)

we find that the total strain-displacement relationship for the rectangular plate
becomes

u,

F-O
a

- 71)
0

_11 0 2 0 0
a a a

0 -(1 -) 0
0

0

b b b b

-0-0 1 - -+7 y 17 -$ 1 - 7)
b a b a b a b a j

or, in using matrix symbolism,

e=bu
where

-(1 77) 0 17 0
L7

0 1 '7

a a a

b= 0 0
1-,

b
0

b
0

112

llg

Its

(5.168)

0

b

-(1 - ) -(1 - g) 1 - -1 91 - 1 -
b a b a b a b a

and u = {ul us

(5.169)

(5.170)

Substituting Eq. (5.167) into (2.24) gives the following stress-displacement
relationship:
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From Eq. (5.167) it is evident that for a given set of displacements u the e.
strains are constant in the x direction ( direction) and that they vary linearly
with y (i? coordinate). Similarly, the e,,, strains are constant in they direction,
and they vary linearly with x (E coordinate). The shearing strains e.,,, on the
other hand, vary linearly with both x and y ( and 27). If the temperature of
the element is assumed constant, it follows from Eq. (5.171) that all stress
components in the panel vary linearly with x and y and that the stress distribu-
tion is such that, in general, it violates the stress-equilibrium equations within
the rectangle.

Calculation of the stiffness matrix k and thermal stiffness h requires integration
with respect to a and ij since the matrix b, unlike the case of bar and triangular
plate elements, is a function of the position variables. Substituting Eqs.
(5.169) and (2.28) into (5.16), multiplying out the matrix product b7'xb, and
then integrating over the volume of the plate gives the stiffness matrix of Eq.
(5.172),
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where to simplify the results the aspect ratio

a
(5.173)

has been introduced.
Similarly, substituting Eqs. (5.169) and (2.27) into (5.17), multiplying out

the matrix product bTxz., and then integrating over the whole volume of the
plate, gives for the thermal stiffness h

Eta
h

2(1 - v)
{19 (5.174)

To determine the stiffness properties in the datum coordinate system the
same procedure as in the case of other elements is adopted: the displacements
in the local coordinate system are related to the displacement in the datum
coordinate system, and from the relationship between the two sets of displace-
ments the transformation matrix A is formed. From Fig. 5.16 it is evident
that the displacements u = {u1 u2 . u8} can be expressed in terms of the
datum coordinate system displacements u = {u39--2 u3,-1 us,, u3s} by
the following equation:

ut

u2

U3

U4

u8

t!8

U7

LUBJ

f 0
l

0

0 0 I 0

la
----------- -------- - ---- ---

X
5r

0 l 0 0

Xur

0 0 0

a"SJ

u3n-2

u32,-1

u3r-2
(5.175)

where A95 and Ayr are the matrices of direction cosines for the pq and qr direc-
tions, respectively. In this case, the direction cosines can be found simply
from the coordinates of the points p, q, and r. Thus, the transformation
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u4

U3r

13p-2

u3s- 2

FIG. 5.16 Rectangular plate displacements in local and datum
coordinate systems.

matrix X for a rectangular panel is given by

Fxar
0

Xra

X_

---------

0 0

(5.176)

0

0 0
:

0

2)Q

0
I

0 0

fro

LINEAR-STRESS ASSUMPTION

We have so far used an assumed displacement distribution to derive the stiffness
properties of a rectangular plate element. We can also start with an assumed
stress distribution and derive the corresponding displacement distribution,
which can then be used for the calculation of stiffness properties. One of the
simple stress distributions used is of the form2",329

Qxx=a1+a2y
oryu = a3 + a4x (5.177)

oay=a5
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where a,, . . . , ab are constants and the orientation of the x and y axes is as
shown in Fig. 5.14. This simple stress distribution, unlike the case of linearly
varying edge displacements, satisfies identically the stress equilibrium within
the rectangle; however, the resulting displacement distribution, which will be
derived subsequently, violates the compatibility of boundary displacements on
adjacent elements.

From Hooke's law for two-dimensional stress field and Eqs. (5.177) we have

8ux I

TX E
(a, + a2y - vas - va4x) + a.TT (5.178)

which, when integrated, becomes

va4x2l1 f(Y)(ux=E a,x+a2xy-va3x-
2

J .+aTx+ E (5.179)

where f(y) is an arbitrary function of y. Similarly, starting with the strain
e.,,, we can show that

lag!) +aTy+g(- (5.180)

where g(x) is a function of x only. Also, from the equation for the shearing
strain we have

aux + auv = I
axv = 2(1 + v)

a6

ay ax G E
(5.181)

Substituting Eqs. (5.179) and (5.180) into Eq. (5.181) and rearranging, we have

f(y) + a4y = 2(1 + v)a6 - [g'(x) + a2x] = ae (5.182)

where ae represents a constant, which is the only possible condition that will
satisfy Eq. (5.182). Primes in Eq. (5.182) represent derivatives with respect to
the appropriate variables. Solving forf(y) and g(x), we have

z

f(y) = aey - a2 + a7 (5.183)

g(x) = [2(1 + v)ab - as]x - a 2 z + as (5.184)

The constants of integration a7 and a8 simply represent rigid-body translations,
while the previously introduced constants ab and ae define rigid-body rotation.
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When we substitute Eqs. (5.183) and (5.184) into Eqs. (5.179) and (5.180) and
rearrange constants a1, . . . , a8 into new constants c1, . . . , c8, it follows that

u:=C1X+c2Y-c3(vx2+y2)+2c4xy+cs

tt = COX + c7Y - c4(x2 + vy2) + 2c3xy + C.

where

1 an a.,
c1 =

E
(a1 - va3 + aTE) c2 =

E
c3 _

2E

a2 a7
c4 =

2E
cs =

E
c6 =

E
[2(1 + v)as - a6]

C7 =
1

E (a3 - vat + aTE) c8 =
a8E

(5.185)

(5.186)

(5.187)

The unknown constants c1i ... , cs can now be determined from the element
displacements 111, ... , ue. Hence

C1
=a(-111+u7)+26(112-tt4+118-ue)

C2 =
G

(-u1 + u3) +
2a

(113 - 114 -I- u6 - u8)

c3 2ab(u2-114+119- u8)

c4

_
2ab(111-113+us-u7)

Cg=tti

C8 =
a

(-u2 + u8) + 26 (u1 - 113 + 115 - u7)

C7
1

=
b

(- u2 + u4) + (u1 - u3 + us - u7)

C8=112

(5.188)

An examination of the displacement functions given by Eqs. (5.185) and
(5.186) reveals that the boundary displacements obtained from these functions
are not compatible with the displacements on the adjacent elements. Never-
theless the use of such functions gives sufficient accuracy provided the size of
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elements is small in relation to the size of stress variations. The strain-
displacement relationships can now be determined from Eqs. (5.185) and (5.186)
and arranged into the matrix equation

e = 6u (5.189)

where

-(I - 10 r0 - 20 -1) -r(I - 20 $1 r(1 - 2E) 1 - 1) -r(I - 2E)
a 2b a 2b a 2b a 2b

b
r0 - 2q) -(I - E) -r(1 - 2q) 1 - E r(1 - 20 -PO - 20 -E

=
2a b 2a b 2a b 2a b
-1 -I 1 -1 1 1 -1 1

26 2a 26 2a is 2a 2b 2a

(5.190)

Bars over the matrix 6 are used here to indicate that the strain distribution
satisfies equations of stress equilibrium. Substituting Eq. (5.189) into (2.24),
we obtain the following stress-displacement equation:
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and the thermal stiffness h is given by

h= Eta
2(1 - v) {f

1 9 -1 -# -1 -fl 1) (5.193)

It is interesting to note that the matrices h are identical for both the linear-
displacement and linear-stress assumptions used for the rectangular plate
elements. The stiffness matrices k, on the other hand, are different for the
two assumptions.

5.9 QUADRILATERAL PLATE ELEMENTS (IN-PLANE FORCES)

The quadrilateral plate element is illustrated in Fig. 5.17, where the displace-
ments ul to u8 are referred to an arbitrary rectangular xy coordinate system.
The stiffness properties of a general quadrilateral panel could be conveniently
calculated by subdividing such panel into triangles and then combining the
stiffness of individual triangular panels to form stiffness matrices of the quadri-
lateral panel. This method has been proposed by Turner et al.329 There is,
however, an alternative method, proposed by Taig,316 which is somewhat
analogous to the method used in the case of a rectangular panel. In this
method a nonorthogonal coordinate system is used, which is indicated by the
coordinates and 77 in Fig. 5.17. The edges 1,2 and 3,4 on the quadrilateral
are represented by = 0 and = 1, respectively, while the edges 1,4 and 2,3

Fto. 5.17 Quadrilateral plate element.
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correspond to 77 = 0 and 77 = 1. Thus, any arbitrary point P within the
boundaries of the quadrilateral is defined by the intersection of two straight
lines, = constant and 77 = constant, which divide the two opposite sides of
the panel in equal proportions. The coordinates and rl can be described as
general quadrilateral coordinates. With this new coordinate system the rectan-
gular coordinates (x,y) are related to the quadrilateral coordinates (E,r7) by the
following relationships:

x = x1 + x415 + x2117 + (x32 - xa1)6ii (5.194)

y = Y1 + Y4j + Y2117 + (Y32 - (5.195)

The quadrilateral coordinate system is nondimensional, and when the general
quadrilateral degenerates into rectangle, the quadrilateral coordinates
become identical with the nondimensional coordinates used on the rectangle in
Sec. 5.8.

The assumed displacement functions for ux and u will be taken to be of the
same form as for the rectangular panel, as given by Eqs. (5.162) and (5.163),
with the exception that the and 77 coordinates refer now to the quadrilateral
coordinate systems. This assumption will ensure, in view of the relations
(5.194) and (5.195), that the boundary displacements will vary linearly in the
rectangular coordinate system and also that the displacements on the adjacent
elements will be compatible. Thus, for the subsequent development of the
analysis, the displacements will be expressed in matrix notation as

112Cr4l - (1-0(1-71) 0 (1 - )n 0 I 0 (I -
0"w L 0 (1 - VI - '1) 0 (I -h7 01) 0(I - >))

[f, 0 A 0 f3 0 f4 01

0 fl 0 t3 0 f3 0 f, u

where u = {u1 u2 u3 N U5 lie U7 us}

.fi=(1 -11)

.f2

J = (1-,7)

(5.196)

(5.197)

(5.198)

(5.199)

(5.200)

(5.201)

The three strain components e3., and e., are obtained from the displace-
ments u,, and u by partial differentiation with respect to the rectangular
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coordinates x and y; therefore, from Eq. (5.196) it follows that the strain matrix
is given by

e=bu

where b =

a 0
Q

0
ax3

0
ax4

0

0 af,
0

aft 0 afa
0

afa

ay ay ay ay

a f l a fl a f z aft afa afa a f4 4 a f44

(5.202)

(5.203)

Lay ax ay ax ay ax ay axJ

The partial derivatives off; are calculated from

(5.204)

af, 'f
(5.205)

ay x

-F

-fG"yn) _

afi aya a
afa ay
a,7 a,7

af, ay af, ay

al

a

a
ax

afi
a

ax

a a

(5.207)

(5.208)
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where the last equation represents the jacobian of the coordinate transformation
(5.194) and (5.195). Evaluating expressions (5.206) to (5.208), we obtain

(ff",77Y) = Y. - Y32 - Y4371 (5.209)

(f2,y) = -Y41 +Y41S +Y4377 (5.210)

J 3,Y +( = -Y41 Y2171?7 (5.211)

+) = - 5Y21 Y32 Y21'7 .212)(

x,ff + += -x 5 213t'77 x32642 x437] . )(

t,']
(x,f2

= x91 - x416 - x437] (5.214)

t,fS
,17 = a41 - x2177 (5.215)

C,fq

f,71
= -x21 - x32 + x2177 (5.216)

6 x,y
d

SX77
= (141Y21 - Y41x2) + (x41Y32 - Y41x32)S + (x21Y43 - Y21x43)?1 (5.217)

To evaluate the matrices k and h for the general quadrilateral panel the
integration in Eqs. (5.16) and (5.17) must be carried out with respect to the
quadrilateral coordinates and il. Hence

r 1 1

k J'b'xb dV = tfo fo bTxb d d17 (5.218)

1 1

and h =fbTxT dV = !fo fo bTxT °00,71) dd di (5.219)

When the expression for b is substituted into (5.218), each coefficient in the
matrix k is of the following form

. _ 1 1 (A, + B, + C117)(A2 + B2 + C277)
dd d7j (5.220)fo fo Ao + Boss + Col]

where A,, B,i . . . are constants expressed in terms of the rectangular co-
ordinates of the four corners of the quadrilateral. Equation (5.220) can be
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integrated with respect to ; thus

j = f ' B1B2 + A1B2 + B1A2 + (BiC2 + C1B2)r7 B1B2(A0 + Corl)
J u 2Bo B0 B0 2

+A1A2+(A1C2+C1A2)i7+CLC2772In Ao+Bo+Coil

B0 Ao + Coy]

- B1B2(Ao + Con) [A1B2 + B1A2 + (B1C2 + C1B2)rl - A0 + Con
B02 L

16
B1B2 B0

x In
AD + B0 + Coil

dd (5.220a)
Ao+Co77 JJ

Equation (5.220a) can be integrated further, but the results are too lengthy to
be reproduced in full. A computer program for the calculation of integrals
given by Eq. (5.220) has been compiled by Taig.315 This program calculates
directly all the necessary elements in the stiffness matrix k; however, the limiting
case of a trapezoidal panel (including a parallelogram) for which the constant
Co = 0 cannot be evaluated from the general program for quadrilateral panels.
To circumvent this difficulty Taig used a special program for trapezoidal and
parallelogram plate elements.

The calculation of the thermal stiffness h is considerably simpler. By using
(5.203) and (2.27) in (5.219) it can be shown that

h= El
Y -x yX{-Y 31 , 4242 62 n2(1 - v) -x42 -,Y31 x31)

(5.221)

The transformation matrix X for a quadrilateral panel is of the same form
as for the rectangle, that is,

71 PQ

0

0

0 . 0

?f1.
0

(5.222)

Mfr
0 0 0
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where the local y axis is assumed to be taken parallel to the pq edge, so that
X,, represent the matrix direction cosines for a perpendicular from the point r
to line pq, and represents direction cosines for pq.

5.10 TETRAHEDRON ELEMENTS109

For a solid tetrahedron (see Fig. 5.18) the assumed displacement distribution
will be taken to be linear in x, y, and z. Hence

ux = clx + C2y + C3Z + C4

u = C5X + COY + C7Z + C8

Us = C9X + C10y + C11Z + C12

where c1, ... , c12 are constants to be determined from the conditions

Ux = 1.11 uy = u2 Ux = u3 at (x1,yl,z1)

Ua = u4 UV = u6 Us = u6 at (x2,y2,Z2)

ux = u7 u = U8 Us = u9 at (x3,y3,z3)

ux = U10 1IV = U11 Its = U12 at (,.C4,y4,Z4)

(5.223)

(5.224)

(5.225)

(5.226)

no. 5.18 Tetrahedron element.
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From Eqs. (5.223) and (5.226) it can be shown that

y z - 3 V4320)ul432ux = - 31V (A9sza + A szy + Ax

+
1

3 V (A4-,-,,y + Aa "y + Aas1z - 3 V4310)114

" z - 3 V4210)u7- V (Aaiiv + '`laity + Ax421

+
1

TV (Asia x + Asz1y + Aai1z - 3 V3210)u10 (5.227)

where a typical term AIQr represents the area projection of the triangle pqr on
the ij coordinate plane, V is the element volume, and Vp,r, is the volume of
the tetrahedron formed by the vertices pqr and the origin o. Noting that Eqs.
(5.223) to (5.225) are of identical form, we see that it follows that expressions
for displacements uv and u1 will be of the same form as (5.227), with u1, u4, u,,
and u10 replaced by the appropriate element displacements in the y and z
directions.

On differentiation of the displacement relationships the following matrix
equation

e = bu (5.228)

is obtained, where in this case

e = {e= evy e21 exv ev3 e:x} (5.229)

u = {u1 us u12} (5.230)

and

-Aa;s 0 0 Aaa, 0 0 -Alq, 0 0 A981 0 0

0 -A4;2 0 0 A<s1 0 0 -A 4"21 0 0 A8S1 0

b= 3 1 0 0 -A 4x88 0 0 Aa 0 0 -A,i1 0 0 A032s1

-Aias 432 0 Ais1 Aaa1 0 -Aas1 -Aias 0 A`si1 A s1 0

0 -Aa88 -Aias 0 A+3v1 Aia1 0 -Ais1 -A4a1 0 Aas1 Aaa1

-. 0 -Aaas Ail 0 Ais1 -Aa 1 0 -A4*1 Asi1 0 Aas`3432

(5.231)

Substituting Eqs. (5.231) and (2.18) into (5.16) and then performing the
required integration demonstrate that the stiffness matrix k is given by

k = k + k, (5.232)

where the component stiffnesses k and k, are given by (5.232a) and (5.232b),
respectively :
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Similarly, from Eqs. (5.231) and (2.27) it can be shown that the thermal
stiffness h is given by

E
h

= 3(1 - 2v) 4'4422 A432 A
34

-A431 -A431 -A 431

A421 A421 A 2 -A321 -A 3z 21 -As } (5.233)

For tetrahedron elements there is no advantage in calculating k and h in the
local coordinate system and then using X-matrix transformation to determine
f and Fi; the datum system of coordinates can be used here ab initio to determine
k and Fi from Eqs. (5.232a), (5.232b), and (5.233).

5.11 TRIANGULAR PLATES IN BENDING

In the small-deflection theory of thin plates the transverse (normal) deflections
uZ are uncoupled from the in-plane deflections ux and u8. Consequently, the
stiffness matrices for the in-plane and transverse deflections are also uncoupled,
and they can be calculated independently. The stiffness matrices for the in-
plane displacements have been presented in Sec. 5.7. To calculate the stiffness
matrix for the transverse deflections and rotations, as shown in Fig. 5.19, we
may start with the assumed deflection it2 of the form

uZ = c1 + c2x + c3y + c4x2 + csxy + csy2 + c,x3 + c8(xy2 + x2y) + c9y3

(5.234)

where c1, . . . , c9 are constants. These constants may be evaluated in terms of
the displacements and slopes at the three corners of the triangular plate using

Y

/ _u3

FIG. 5.19 Triangular plate element in bending.
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the equation

u = Cc (5.235)

where u = {u1 u2 us) (5.236)

and c = {c1 c2 c2} (5.237)

while the matrix C is given by

1 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0

3 0 -1 0 0 0 0 0 0 0

4 1 0 Y2 0 0 y 22 0 0 y23

C 5 0 0 1 0 0 2 Y2 0 0 3)122

6 0 -1 0 0 -y2 0 0 -y22 0

7 1
X3 y3

X32
x2)13 y 32 X33 x3)132 + x32)13 3)33

8 0 0 1 0 x3 2 y2 0 2x3y3 + x32 3)132

9 0 -1 0 -2x3 -y2 0 -3x32 -(Y32 + 2x3y3) 0

1 2 3 4 5 6 7 8 9

In deriving Eq. (5.235) the notation

(uz).'.", = ul
8uY8uZay)

= U2 -) _ -u2
ax ai.1,i1.v1

(5.238)

(5.239)

and so on, has been used.
The deflection function represented by Eq. (5.234) was first introduced by

Tocher,322 in an attempt to retain symmetric form in x and y. Other functions
have also been used to evaluate stiffness matrices of triangular plates in bending.
For example, Gallagher suggested the function

u,, = c1 + c2x + c3y + c4x2 + caxy + c6Y2 + c7x3 + c8xy2 + c9y3 (5.240)

which suffers from the lack of symmetry because of the presence of the xy2
term. An excellent discussion of different forms of deflection functions
employed for calculations of triangular plate stiffness is given by Clough and
Tocher.68 Further ideas on the subject are expounded by Bazeley et al se

Returning to our assumed deflection function in Eq. (5.234), we can calculate
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the strains from the flat-plate theory, using
a2uz

ex, = -z
aY2

(5.241)

a211.

2 (5.242)evv = -z a
y

a211

ex,, = -2z
ax ay (5.243)

Hence, using the above equations and (5.234), we have

exx 0 0 0 2 0 0 6x 2y 0

evv = -z 0 0 0 0 0 2 0 2x 6y c (5.244)

exv 0 0 0 0 2 0 0 4(x + y) 0

or symbolically

e = Dc (5.244a)

where D stands for the 3 x 9 matrix in (5.244), including the premultiplying
constant -z. Noting from Eq. (5.235) that
c = C-'u (5.245)

we have e = DC-'u = bu (5.246)

where b = DC-' (5.247)

Subsequent rsubstitution of b into (5.16) leads finally to the stiffness matrix

k = (C-')TJ DTxD dV C (5.248)
v

The inverse of the matrix must be obtained numerically for each triangular
element. The matrix product in the volume integral can be multiplied out to
give

f D7'xD dV - Et'
12(1 - v8)

r-0;
0

E 4

X11

0 2(1 - i')

4v 0 4

12x 0 12vx 36x2

Symmetric

dx dy

+ y)
4(vx + y) 4(1 - v)(x + y) 4(x + vy) 12(vx + y)

(12 - 8v)(x s

- 8(1 - v)xy

12vx 0 12y 36vxy 12(x + vy)y 36y8

(5.249)
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The individual coefficients in (5.249) can be integrated using the area integrals
listed below

I(x°,y°) = ff dx dy = Jxsy2 (5.250)

I(x',y°) = fix dx dy = *x3Ey2 (5.251)

I(x2,y°) = f f x2 dx dy = 1':'x3Ys (5.252)

I(x°,Y') = f fY dx dy = ex3y2(Y2 + y3) (5.253)

1(x°,y2) = f fY2 dr dy = i -xsy2(y22 + y2y3 + ys2) (5.254)

I(x',yl) = f fxy dx dy = 4x32y2(ys + 2y3) (5.255)

where the x and y axes and the location of the vertices of the triangle are as
indicated in Fig! 5.19. It should also be noted that the oy direction has been
selected to coincide with edge 1,2, with the origin placed at the vertex I only
in order to simplify the presentation of the results.

To determine the thermal forces Q on the element we may assume that the
temperature distribution is given by

T=T,,,+tOT (5.256)

where T,,, is the mean temperature of the element and AT is the temperature
difference between the upper (z = 1/2) and lower (z = -1/2) surfaces. Both T.
and AT will be assumed constant over the element. This assumption is satisfac-
tory provided that the size of elements permits adequate representation of vari-
ations in temperature over the whole field of the idealized elements.

Substituting Eqs. (5.247) and (5.256) into (5.17), we obtain

zQ = (C-1)T
t

DTxT dV a AT (5.257)

Here again the inverse of C must be found numerically, while the integral

t DTXT dV is determined from

I

L E,sJDx? dV

12(1 S

7

8

I

22

33

44

dx d y
-EsAia 5

6(1 - v)
6

6x

2(x + y)

9 L 6Y J (5.258)



STIFFNESS PROPERTIES OF STRUCTURAL ELEMENTS 115

99

U3

FIG. 5.20 Displacements on a triangular plate element referred to
datum coordinate system.

The stiffness matrix k and thermal forces Q must now be transformed into
the datum coordinate system corresponding to the displacements shown in
Fig. 5.20. It can easily be demonstrated that the required transformation
matrix a is given by

a = [A A A] (5.259)

1 0 0

where A = 0 lox in,,,,

0 10y Fnou

(5.260)

with [lox 1710x] and [1,,, 1710.] representing the direction cosines for oy and ox
directions, respectively.

5.12 RECTANGULAR PLATES IN BENDING

DISPLACEMENT FUNCTION SATISFYING
DEFLECTION COMPATIBILITY

One of the displacement functions used to calculate stiffness properties of
rectangular plates in bending is of the form$ "

Itz=au

where the positive directions of

u = {111 112 ...
u12}

(5.261)

(5.262)
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rio. 5.21 Rectangular plate element.

are indicated in Fig. 5.21 and the matrix a is given by

1

2

3

4

5

aT= 6

7

8

9

14

11

12

rl - 77 - (3 - ?1) - (1 - )(3 - 2r1)n2

(1 - )77(1 - 71)2b
- (1 - x)2(1 - q)a

(1 - )(3 - 2rl)r12 + e(1 - )(1 - 2)77

-(1 - )(1 - 7!),12b
- (1 - )221a

(3 - e71(1 - 71)(1 - 2-1)

i1),12b

(1 - ) 2r1a

(3-2) 2(1 -1)+X71(1 -'l)(1 -2r1)
77)2b

I)a

116

(5.263)

The deflection function represented by (5.261) and (5.263) ensures that the
boundary deflections on adjacent plate elements are compatible; however,
rotations of the element edges on a common boundary are not compatible,
and consequently discontinuities in slopes exist across the boundaries.

Using Eqs. (5.241) to (5.243) and (5.263), we have

e = bu (5.264)
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where

[1 -
1 (1 - 2)(1 - 17) as (I 1

- 611(l 71)l
ab

2z2 0 (1 - )(2 - 371) b (1 -417+3712)
a

3 -(2 - 32)(1
-'1)2z

0 -(1 bz
a

z [-I + 6(1 - )
4 (I - 2077 as

I -(1 - i:)(1 - 271) 2z
6 111(+ - 71)]

ab

2z 2
5 0 (1 - )(l - 317) z

-71(2 - 377)

6 -(2 - 3z;)r12z

0

a

(I 4 { 3g') 6
bT = a

(5.265)
z

7 211)
6

as - 611(1 - 77)l
ab

8 0 (1 - 377) 71(2-3q)
2z

a

9 -(1 - 30)7 2z
0 ba

6z [-1 +
to Z(1 - 271) bs

± 671(1 - 71)1
ab

II 0 (2 - 377) -(1 -471+377°) az

Is -(I - 77) 2z
0 (2 -L b J

Now substituting b from (5.265) into (5.16) and
operations, we obtain the stiffness matrix

IF 1

k1.r

6

k= 7

Symmetric

-- ............... ..------ ------------

then performing the required

(5.266)

12

k11.11k11.1

1 6 7 ... 12

where the submatrices k,.,, kt1,1, and k11.11 are presented separately in Tables
5.1 to 5.3.
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Assuming as before that the temperature distribution within the element is
of the form T = T,,, -I- z AT/t, we can calculate the thermal forces Q from
Eqs. (5.265) and (5.17). Hence it may be shown that

1 2 3 4 5 6 7 8 9 10 11 12

E12a AT

Q = 24(1 - v)
{0 -a b 0 a b 0 a -b 0 -a -b} (5.267)

The transformation matrix A for the rectangular plate elements in bending is
given by

A = [A A A AJ (5.268)

where the matrix A is the same as for the triangular plate [see Eq. (5.260)].

DISPLACEMENT FUNCTION SATISFYING DEFLECTION
AND SLOPE COMPATIBILITY

A deflection function that ensures both the deflection and slope compatibility
on adjacent elements was introduced by Bogner et al .,15 who used the deflection
us expressed by means of the hermitian interpolation formula for two dimen-
sions.* Using the sign convention previously established in Fig. 5.21, we have
the matrix a for such compatible deflections and slopes given by

I (I + 277)(1 - 77)2

2 (1 -1- 2E)(I - c)2rl(1 - 27)26

3 e)2(l + 217)(1 - 77)2a

4 (I + x)2(3 - 211)112

5 -(1 -4- e)2(l - 17)1126

a5' = 6 -1=(l - t)2(3 - 2r1),72a
(5.269)

7 (3 - 277)112

8 -(3 - r7)t12b

9 (1 - 2r7)712a

to (3 - 271)(1 - 77)2

11 (3 - 71)2b

12 (1 - e)e2(l -I- 277)(1 - rl)2a

This deflection function, unlike the first function used in this section, does not contain
terms capable of representing constant values of the twist of the middle surface of the plate
aeu,lax ay. Another function satisfying the deflection and slope compatibility and using
"generalized" displacements a2udax ay at the four corners, in addition to the 12 displacements
in the present derivation, was introduced by Bogner et al. in Ref. 54. This function can
represent constant value of the twist over the whole field of the rectangular plate, and it
appears to offer distinct advantages over other deflection patterns.
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Equation (5.269) can then be used to determine the matrix b expressing the
total strains due to unit displacements. It can be easily demonstrated that
this matrix is given by

t
0z

(1-2(1+2x1)(1-71 -77) b)sQ,

2 (1-2)71(1 -t1)s6as (I+2 )(I- )s(2-311)6 (l- )(I-t1)(I-371)IQz

Z 6az 2
I z3 +271)(I -71)s a b-(1-%)(1-3)q(1-71)

4 (I-2?:)(3-271)71 as

-(I
a

br - 6
-(2-3$)(3-2Q)712az (I -27)) bz

b (l-'1)1z

6z 6z 72z
7 -(I -2)(3 -27])7lsas -(3-2 )l'(l-271)bs - (I-
8

(1-2)(1-n)77s6bz

(3-2r91(1-371) b (I -071(2-371)'z7
9

-2i])71a27z -(1-);s(1-271) bz
G

to -(I +271)(1-17)sas (3-2)V(I -271)bs (1- )77(I -71 h

11 -(I - 2)(1+271)(1-71)sLbz (3- MV(2- 371) b -71)(1-371)'a

12 -a -3E)(1+2q)(i -n)2 a (1-s(I-271) bs J
(5.270)

The matrix b is then substituted into Eq. (5.16) to evaluate the stiffness matrix
based on the compatible deflection function. For convenience, the results are
presented again as submatrices of (5.266) in Tables 5.4 to 5.6.

The thermal-force matrix Q based on the compatible deflection distribution
leads to the identical result obtained in Eq. (5.267) for noncompatible distribu-
tion.

5.13 METHOD FOR IMPROVING STIFFNESS MATRICES

In deriving stiffness properties for elements requiring an assumed deflection
form we have used displacement functions with the number of free constants
equal to the number of displacements at the node points. These constants
were evaluated in terms of the element displacements, and the strains were
then determined for unit values of the displacements. This allowed the use
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of the unit-displacement theorem to determine stiffness and thermal-force
matrices. Since the assumed displacements were compatible within the element
(not necessarily satisfying compatibility of displacements and slopes on the
adjacent elements), the calculated thermal-force matrices were exact [see Eq.
(5.17)]. However, not all assumed displacement distributions did satisfy the
stress-equilibrium equations.

If the assumed displacement function contains more free constants than the
number of displacements at the node points, these additional constants may be
determined from the condition of minimum potential energy. Thus by taking
more terms in the displacement function we can obtain an improvement in
the satisfaction of equilibrium conditions.253 The analysis which follows may
be applied to any type of element.

We assume first that the displacement function for {u, u uZ} is given by

U.

it, = Gc (5.271)

uz

where G is a rectangular matrix whose elements are the assumed displacement
functions and

C = {C1 C2 ..
C. J (5.272)

By using the strain-displacement relations we can obtain from (5.271)

e = Hc (5.273)

where H is derived from G by partial differentiation in accordance with relations
(2.2).

From Eq. (5.271) we can express the n displacements u at the node points
in terms of the m undetermined constants c:

u = Cc (5.274)

which will be partitioned as

U = [Ca Cb]
ca

(5.275)
Cb

Assuming that ICal 0, we have

C. = Ca lu - Ca 1CbCb

which can be combined with the identity Cb = Cb to yield

C . [Ca] [Ca-1 -ca-Ic
Cb 0

1

1 rCb]
= W6

(5.276)

(5.277)
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where W =
Cut -Ca ICb

0 I
(5.278)

U
and fi =

Cb

(5.279)

From Eq. (5.28) with T = 0 and Eqs. (5.273) and (5.277) we can write

Uf cIV

= JcTJ HTxH dV c
v r

= WWTWTJ HTxH dV Wfi
v

_uK6
r

(5.280)

where K = WTJ HTxH dV W (5.281)
v

The total potential energy U can be written as

U = Ut - uTS

_ iuKfi - uT'S

_ J [UT CbT]
CKa4 Kcal [u 1 - [u7' Cb] LSJ (5.282)

Kb4 Kbb Cb 0

where S is a column matrix of the element forces corresponding with the
displacements u. Now the condition of minimum potential energy requires
that

8U = 0 (5.283)
afi

leading to

CKK.4

Kab

ba KoUJ LCbI - IOJ = L0.1

(5.284)

The matrix cb can be expressed in terms of u by solving the second row of the
m - n equations in (5.284), so that

Cb = -Kbb 1Kbau (5.285)

which, when substituted into the first row of then equations in (5.284), results in

(Kaa - KabKbb 'Kba)u = S (5.286)

Hence, by definition, the element stiffness matrix is given by

K = (Kaa - KabKbb 1Kba) (5.287)
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Some simplification will result if we select the displacement functions in two
sets, n functions satisfying the interelement compatibility on boundary deflec-
tions and slopes and in - n functions vanishing on the boundaries. For such
functions C,, = 0, and the in - n functions can be regarded as perturbations
on the first set to ensure satisfaction of the stress-equilibrium conditions. For
example, the compatible displacement function for the rectangular plate
element in bending could be improved with perturbation functions in the form
of products of normal modes of vibration of a clamped-clamped beam.

PROBLEMS
5.1 Derive the stiffness and thermal-force matrices for a pin jointed bar element with the

cross-sectional area varying linearly from A, to A2.

5.2 Derive the stiffness matrix k for a constant-shear-flow panel with midpoint attachments,
as shown in Fig. 4.15.

5.3 Explain why the row sums of coefficients of the stiffness matrices for triangular or
rectangular plates with only in-plane forces are equal to zero, that is,

I k = 0 for any row
I

5.4 Using the unit-displacement theorem, derive the stiffness matrix k for a beam element
with the second moment of area varying linearly from 1, to I. The assumed deflection shape is
to be taken as a cubic curve.

5.5 The exact stress distribution in a pin-jointed bar element is given by

E(u2 - u,)a= /

where u2 and it, are the displacements of the two ends (see Fig. 5.2), E is the Young's modulus,
and / is the length. Using a compatible displacement distribution

11n = Cl + C2x + C3X2

and the exact stresses, demonstrate that the unit-displacement theorem gives the correct
expression for the stiffness matrix. To determine the constants c,, c2, and c3 we must use
it, = u, at x = 0 and n = u2 at x = 1, while the third condition may be selected arbitrarily as
ux=2u,atx=l/2.

5.6 Verify Eq. (5.221) for the thermal-stiffness matrix h of a quadrilateral plate element
with in-plane forces only.

5.7 Verify Eq. (5.267) for the thermal-force matrix Q for a rectangular plate element in
bending.

5.8 Derive an improved stiffness matrix for a rectangular plate element with in-plane forces
only using the compatible displacement distribution given by Eqs. (5.159) and (5.160) and a
corrective distribution of the form

ud = c,, sin ark sin 1ri and it, = c sin 7rt; sin Trr/



CHAPTER 6
THE MATRIX
DISPLACEMENT
METHOD

In Chap. 5 we determined stiffness properties of individual structural
elements that can be used in the idealization of continuous structures. To
determine the displacements of the idealized structure under some specified
external loading and temperature distribution, we must obtain stiffness proper-
ties of the assembled structure made up from the idealized elements. In this
chapter we shall discuss how the stiffness matrices for individual elements can
be combined to form the matrix equation relating the applied mechanical forces
and equivalent thermal forces to the corresponding displacements on the
assembled structure. Since the displacements appear as the unknowns, this
formulation is, therefore, described as the matrix displacement method.

6.1 MATRIX FORMULATION OF THE DISPLACEMENT ANALYSIS

The fundamental assumption used in the analysis is that the structure can be
satisfactorily represented by an assembly of discrete elements having simplified
elastic properties and that these elements are interconnected so as to represent
the actual continuous structure. The boundary displacements are compatible
at least at the node points, where the elements are joined, and the stresses
within each element are equilibrated by a set of element forces P) in the direc-
tions of element displacements iii'). The element forces are related to the
corresponding displacements by the matrix equation

sm = k(ofim -I- Qu) (6.1)

where the superscript (i) denotes the ith element and all matrices refer to a
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datum coordinate system. Equation (6.1) can be determined for each element
separately, and for the complete structure all these equations can be combined
into a single matrix equation of the form

S=ku+Q (6.2)

where S = (SO) S(2) . . . S)') . .} (6.3)

k = [kcl) k(2) ... k(i) ... (6.4)

u = {u(l) u(2) ... U(i) ...} (6.5)

Q = {Q(1) Q(2) ... QM ...} (6.6)

It should be noted here that in Chap. 5 all matrices pertaining to individual
elements were used without superscripts indicating the element number.

For subsequent analysis it is convenient to introduce a matrix of displacements
on the assembled structure

U = W l U2 ... U, ... U,,,} (6.7)

where U, represents a typical nodal displacement, referred to a datum coordinate
system. It is evident from the form of Eq. (6.5) that the element displacements
u can be expressed in terms of the structure displacements U by the equation

u = AU (6.8)

where A is a rectangular matrix in which every row consists of zeros except for
a single term of unity, the position of which identifies that element of a which
corresponds to the particular element of U. The external loading corresponding
to the displacements U will be denoted by the matrix P, such that

P = (P1 P2 ... p1 ... P,,,} (6.9)

where Pi represents an external force in the direction of the displacement Us.

To relate the external forces P to the corresponding displacements U virtual
displacements rSU are introduced. The virtual displacements on individual
elements can then be obtained from Eq. (6.8), so that

66=ASU

The virtual work for the displacements t5U is given by

(6.10)

6W=6UTP (6.11)

while the virtual strain energy can be determined from

SU; _ pi(o}7'Sn) = SuT S (6.12)

From the principle of virtual work 6 W = 6U; it follows that

6U7' P = 6UT S (6.13)
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Substituting Eq. (6.10) into (6.13), we have

dUT(P - ASS) = 0
and since bU represents arbitrary virtual displacements,

P=ATS

(6.14)

(6.15)

Equation (6.15) is in fact the equation of equilibrium relating the external
forces P to the internal forces ; (element forces). Finally, substitution of
Eqs. (6.2) and (6.8) into (6.15) results in the matrix equation

P = ATkAU + ATQ
or KU=P-Q (6.16)
where K = ATkA (6.17)

and Q = ATQ (6.18)

The matrix K is the stiffness matrix for the complete structure regarded as a
free body, and Eq. (6.16) represents equations of equilibrium for element
forces acting at all joints. This implies that the load matrix P must constitute
a set of forces in static equilibrium, and it includes the reaction forces. How-
ever, all these forces are not independent. From the consideration of overall
equilibrium of the structure it is clear that there must be six dependent equations,
corresponding to the six rigid-body degrees of freedom, relating the forces P.
This dependence will render the matrix K singular and thus must be eliminated
from Eq. (6.16). This is accomplished by assuming that six displacements at
certain selected points on the structure are equal to zero and eliminating the
corresponding rows and columns from the complete stiffness matrix K.
then is it possible to obtain the solution for displacements from

Only

U,. = K.-'(Pr - Q7) (6.19)

where the subscript r is used to indicate that all matrices have been reduced in
size to exclude forces and displacements at the selected points. The six dis-
placements must be chosen in such a way as to ensure that all rigid-body
degrees of freedom are completely restrained (three translations and three
rotations). Naturally, additional displacements may also be eliminated from
Eq. (6.16). For example, in the analysis of symmetrical structures under
symmetrical loading the out-of-plane displacements at the plane of symmetry
must be equal to zero, and they must also be eliminated.

The calculation of the stiffness matrix K in Eq. (6.17), as presented in the
general theory, involves the matrix multiplication VIA. In practice, however,
this multiplication is never carried out, since this operation is equivalent to
the placing of elements from k' in their correct positions in the larger frame-
work of the matrix K and then summing all the overlapping terms. This is a
simpler operation than the matrix product ATkA, and it can be programmed
directly for a digital computer without actual setting up the transformation
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matrix A. Similarly, the multiplication ATQ is equivalent to placing elements
from Q in their correct positions in the larger framework of the matrix Q and
then summing all the overlapping terms.

In order to prove the above statements, A must be considered in its partitioned
form, that is,
A = {A(i) A(2) ... A(r) ... A(N)) (6.20)

where N denotes number of structural elements. From Eqs. (6.4) and (6.20)
it follows that the matrix product ATkA is given by

ATRA = [(A('))7'
(A(2))7' . . . (A(r))'1 ... (A(s)) ]

rk(1)

k(2)

x
k(r)

0

FA(1) T

A(2)

0

k(X)J

A(r)

LA(N) J
N

_ (A(r)) Tk(r)A(r) (6.21)
r=1

It has therefore been shown that the matrix multiplication ATkA can be
reduced to summation of the products (A(r))Tk(r)A(r) taken over all elements.
For a pin jointed bar element k(r) is a 6 x 6 matrix relating the element forces
to their corresponding displacements in the directions g, h, i, j, k, /, which
without loss of generality may be assumed to be taken in the same order as in
the matrix U. Thus the matrix k(r) can be represented as

koo kon
... kill

k(r) = kho khh
... kilt (6.22)

kto kill ... kt)

and the corresponding transformation matrix A(r) becomes

1

123 ... ghijki ...n

2

A(r) = 3
0 I 0 (6.23)

4

5

6
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(1) (3) (5) \(7)

UZ

VIU5U,

p (2) (6)

FIG. 6.1 Two-dimensional pin jointed frame.

From the multiplication (A(r))Tk(r)A(r) it follows that

12 ... ghijki ... n

2
0

133

0 1 0

I

g
h

(A(r))k(r)A(r) =
J

k
I

11

0

0

k(r) 0 (6.24)

0 0

from which it is evident that the alternative method of calculation of the stiffness
matrix K is justified. The proof that A7'5 can be obtained by the summation
procedure is similar and need not be discussed in detail.

To emphasize the advantages of the summation of stiffness as compared
with the matrix multiplication in Eq. (6.17) consider a two-dimensional truss
formed by seven pin jointed bar elements, as shown in Fig. 6.1. The joints
are numbered consecutively from I to 5, and the horizontal and vertical dis-
placements of joints are numbered from I to 10. For this case the relationship
6 = AU is presented by Eq. (6.25):
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-
-Ul -

1 -1 0 0 0 0 0 0 0 0 0

U2 2 0 1 0 0 0 0 0 0 0 0

U3 3 0 0 1 0 0 0 0 0 0 0

U4 4 0 0 0 1 0 0 0 0 0 0

U, 5 1 0 0 0 0 0 0 0 0 0

U2 6 0 1 0 0 0 0 0 0 0 0

U5 7 0 0 0 0 1 0 0 0 0 0

U0 8 0 0 0 0 0 1 0 0 0 0

U3 9 0 0 1 0 0 0 0 0 0 0

U4 I0 0 0 0 1 0 0 0 0 0 0 U1

U5 11 0 0 0 0 1 0 0 0 0 0 U2

u(2) U, 12 0 0 0 0 0 1 0 0 0 0 U3

u(3) U3 13 0 0 1 0 0 0 0 0 0 0 U4

u(4) U4 14 0 0 0 1 0 0 0 0 0 0 U, (6.25)

fim U7 15 0 0 0 0 0 0 1 0 0 0 U0

V(8) U8 16 0 0 0 0 0 0 0 1 0 0 U,

6(') U, 17 0 0 0 0 1 0 0 0 0 0 U8

U0 18 0 0 0 0 0 1 0 0 0 0 U0

U7 19 0 0 0 0 0 0 1 0 0 0
U10

U8 20 0 0 0 0 0 0 0 1 0 0

U5 21 0 0 0 0 1 0 0 0 0 0

U0 22 0 0 0 0 0 1 0 0 0 0

U0 23 0 0 0 0 0 0 0 0 1 0

U10 24 0 0 0 0 0 0 0 0 0 1

----------------------------------------------------------
U7 25 0 0 0 0 0 0 1 0 0 0

U8 26 0 0 0 0 0 0 0 1 0 0

U0 27 0 0 0 0 0 0 0 0 1 0

28 LO 0 0 0 0 0 0 0 0 1)

1 2 3 4 5 6 7 8 9 10



THE MATRIX DISPLACEMENT METHOD 135

It is clear that in view of the size of the matrix A (order 28 x 10), the multi-
plication ATkA is time-consuming and that the summation of stiffnesses is by
far the easiest and fastest method of compiling the stiffness matrix K for the
complete structure.

Although the numbering system for node points can be selected arbitrarily,
it is generally preferable to number nodes first in one bay or segment of the
structure and then to proceed with the numbering of nodes in the next bay,
and so on, since this particular numbering scheme leads to a stiffness matrix
of the band type, for which special time-saving programs may be employed.

The displacements at each node point (in general six, i.e., three translations
and three rotations) are also numbered consecutively. Thus, for a typical
node p the corresponding displacements in the matrix U are arranged in the
following manner:

Ue,b = displacement in the x direction
U8v-4 = displacement in the y direction
U89_a = displacement in the z direction
U8p_2 = rotation about the x axis

rotation about the y axis
Uep = rotation about the z axis

Naturally, if only translational displacements are considered, only three dis-
placements for each node point need be specified. For these cases

displacement in the x direction
displacement in the y direction

U3,, = displacement in the z direction

The basic steps in any matrix displacement method are outlined in the flow
diagram of analysis in Fig. 6.2. The following steps leading to the calculation
of displacements on the complete structure can be identified:

1. Compilation of basic data on the idealized structure: position of node
points and element orientation (topology of the structure), element material
and geometrical characteristics (stiffness characteristics of the structure)

2. Determination of local coordinates (x,y,z)
3. Calculation of element stiffnesses in local coordinates kI'>
4. Determination of direction cosines for each element?,")
5. Calculation of element stiffnesses in datum coordinates

ka> = (X(f))Tk({>A(f)

6. Addition of element stiffnesses to form the stiffness matrix for the
complete structure K

7. Elimination of rigid-body degrees of freedom to establish the reduced
stiffness matrix K,.

8. Inversion of the stiffness matrix Kr



THEORY OF MATRIX STRUCTURAL ANALYSIS 136

Element type
and stiffness

data

Element
stiffness
program

Element
stiffness

matrix
kt, l

Element stiffness
matrix in datum

coordinates
k(il=( xli))rklilXlsl
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FIG. 6.2 Flow diagram for the matrix displacement analysis.

Element
stresses

of i l

9. Conversion of pressure distribution into concentrated forces
10. Calculation of element thermal forces Q(i) and Qt')
11. Addition of element thermal forces to form Qr
12. Calculation of the resultant loading Pr - Qr
13. Calculation of structure displacement Ur = Kr1(P,r - Qr) and hence

element displacement, forces, and stresses

The elimination of rows and columns to remove the rigid-body degrees of
freedom is cumbersome inasmuch as it reduces the size of matrices. It has
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been found preferable to modify the stiffness matrix K by replacing the affected
rows and columns with zeros, with the exception of the diagonal terms, which
are replaced with ones.277 Similarly the affected rows in P and Q are replaced
with zeros.

Hence Eq. (6.16) becomes

rC0r]-[0 -[0
[Ur]

or P,,, = K711U,11 (6.26)

where P,,, = [Pr] - [Qr]
(6.27)

0 L0

- [K, 0
K,n L 0 IJ

U,n =
[0]rHence

U,,, =

(6.28)

(6.29)

(6.30)

Thus the retention of a unit matrix in K,,, ensures the correct solution for U,
without rearranging the basic matrices appearing in the analysis.

6.2 ELIMINATION OF THE RIGID-BODY DEGREES
OF FREEDOM: CHOICE OF REACTIONS
The displacements U of all node points in an unconstrained structure may be
partitioned into two submatrices such that

U=CwJ (6.31)
U,

where w represents displacements restraining the rigid-body degrees of freedom
and U,. represents all remaining displacements (degrees of freedom). Thus the
matrix w is of order 1 x 1 for one-dimensional structures, 3 x I for two-
dimensional structures, and 6 x 1 for three-dimensional structures. It can
comprise both deflections and rotations or deflections only. The external
forces P can likewise be partitioned so that

P - (6.32)
LPuJ
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where Pand P,+ are the forces in the directions of w and U,, respectively.
The forces P,,, may be considered to be reaction forces due to P,,.

Consider now a kinematic relationship, valid only for small displacements,

U, = r + Tw (6.33)

where r represents the displacements U, relative to the rigid frame of reference,
established by w = 0, and T is a transformation matrix. If we apply arbi-
trary virtual displacements 6w, then from Eq. (6.33)

6U,=T6w (6.34)

and the virtual work

6W= 6w'P.w+ 6U,.TP (6.35)

From the principle of virtual work it is clear that if the virtual displacements
are only those representing rigid-body degrees of freedom, then

6W=0

and hence from Eqs. (6.34) to (6.36) it follows that

bwT (P,,, + 0

(6.36)

(6.37)

Since the virtual displacements 6w have been chosen arbitrarily, 6w : 0, and
we must have that

P,0 + TTP = 0 (6.38)

This last equation is in fact the equation of equilibrium for the rigid-body
degrees of freedom, i.e., overall static equilibrium, and it can be used to de-
termine the reactions P,, for a given set of externally applied forces P,,. How-
ever, the more usual form of the overall equilibrium equations is

P,0 + VP,, = 0 (6.39)

where V = TT (6.40)

is determined from statics. It should be noted that the above analysis is also
applicable to a single structural element. In such cases, however, we should
use the symbols S,,, and S,, instead of P,,, and P,,, and v instead of r.

In the matrix displacenient method of analysis the rigid-body degrees of
freedom are eliminated by making w = 0. This establishes a rigid frame of
reference with respect to which all displacements U, are measured. Thus
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when w = 0, it follows from Eq. (6.33) that

U, = r (6.41)

The transformation matrix T depends on the choice of the displacements w.
For certain choices of w, however, the matrix T does not exist, and the stiffness
matrix K,. corresponding to the displacements U, is singular. The next two
sections discuss methods of selecting the correct rigid frame of reference using
either equilibrium equations or kinematics relations. The problem of finding
a suitable rigid frame of reference occurs in aeronautical and aerospace analyses
since the structures have no real externally applied constraints. In civil
engineering the frame of reference is the foundation with zero displacements.
The transformation matrix T will also be utilized in the vibration analysis of
unconstrained structures (Chap. 12).

6.3 DERIVATION OF THE TRANSFORMATION
MATRIX V FROM EQUILIBRIUM EQUATIONS

ROTATIONAL AND TRANSLATIONAL DEGREES OF FREEDOM

Consider a three-dimensional structure (Fig. 6.3) in which each nodal point
has six degrees of freedom, three translations, and three rotations. Resolving
forces in the directions of the datum axes and then taking moments about the
same axes gives the following equilibrium equations:

FORCES

P1+P7 -i-P13+...=0
P2 +P8+P14+...=0
P3+Pu±P15+...=0

(6.42)

ric.6.3 Forces corresponding to translational and rotational degrees of
freedom.
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MOMENTS

-P221 + P391 + P,1 - P8z2 -= P992 + P10 - Pl4z3 + P1573 + Pig - ... = 0

Plzl - P3X1 + P5 + P722 - P9X2 + P11 + P1323 - P15x3 + P17 I = 0

-P1Y1 + P2x1 + Pa - P7Y2 + Pax2 + P12 - P13Y3 + P14x3 + P18 - = 0
(6.43)

where the subscripts with the and z coordinates refer here to the nodal
numbers.

I f we take

P,0 = {P1 P2 P3 P.1 P5 Pa} (6.44)

P = {P7 P8 P9 . .} (6.45)

the equations of equilibrium can then be written in matrix form as

P

I 0 I P2

P3

0 -z1 Y1 : Pa

zl 0 -i1 I P5
l

-Yl 0 Pa

+

P12

= 0 (6.46)

The 6 x 6 square matrix in Eq. (6.46) is obviously nonsingular, * and consequently .
it is always possible to determine P,0 in terms of P,, and obtain V. If the origin
for the datum coordinates is chosen at node 1, the 6 x 6 square matrix becomes
a unit matrix, and the 6 x n matrix in Eq. (6.46), where n represents number
of forces in P,,, becomes the transformation matrix V.

* See matrix inversion by partitioning in Appendix A.
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Y

FIG. 6.4 Forces corresponding to translational degrees of freedom.

TRANSLATIONAL DEGREES OF FREEDOM ONLY

Consider a three-dimensional structure (Fig. 6.4) in which each nodal point
has only three translational degrees of freedom, i.e., three deflections. Here
the following equations of overall equilibrium are obtained:

FORCES

P1+P4+P7+P1o+P13+...=0
P2+P6+Ps+P11+P14+... =0
P3+Pa+Po+P12+P15+...=0

MOMENTS

(6.47)

-P2Z1 + P3y1 - P522 + P4Y2 - P8Z3 + Pots

- Pu24 + P12Y4 - P14Z6 + P16Y6 - ... = 0

P121 - P3x1 + P422 - Pax2 + P723 - Pox3
+P10!4-P12X4+P13;-P15X5+... =0

-P191 + Pail - P4Y2 + P5 2 - P7Y3 + Paxs

- P10Y4 + P11x4 - P13Y6 + P14x5 - ... = 0

(6.48)

where, as before, the subscripts with the x, Y, and 2 coordinates refer to the
nodal numbers associated with the corresponding forces. Taking

Pw = {P1 P2 P3 P4 P8 P12} (6.49)

(6.50)and P = {P5 Pa P7 P9 P10 P11 P13 P14 Pls . . '}
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we can write Eqs. (6.47) and (6.48) in matrix form as

f 1 0 0 1 0 0 11 P1 -l

0 1 0 0 1 0

0 0 I 0 0 1

0 -z, y", 0 -z3 Y4

i, 0 -z, 2. 0 -x4

-Y x, 0 Ys x3 0

P!

P3

P4

P3

LP1=J

0 0 1 0 1 0( 1 0 0

1 0 O 0 0 1 0 I 0

0 I 0 1 0 0 0 0 1

------------------
-2 J'a 0 Y3 0 -Z4 0 -36 Y6 ...
0 -X2 Z3 , -X3 Z4 0 Z6 0 -X6 I '

I- z3 0 -Y3 0 -Y4 x4 1 -Y6 X6 0

=0

(6.51)

The solution for P,a will exist provided the 6 x 6 square matrix in the first
term of Eq. (6.51) is nonsingular. When we introduce

0 -21 Y1

A81 = 21 0 -x1 (6.52)

-Y1 X1 0

0 -23 .Y4

A22 = 22 0 -X4

1

(6.53)

_Y2 x3 0

0 -Z31 Y41

and Z = A22 - A21 = 221 0 -x41 (6.54)

-Y21 X31 0

where 221 = 22 - 21 (6.55)
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and so forth, it can be shown that the inverse of the 6 x 6 matrix is given by

I I -' [!..t.Z-IA21 -Z-1

A21 Ant -Z-1A21 Z-1

provided IZI 0

which finally reduces to

221' 31Y41 - Y21.31 X41 0

(6.56)

(6.57)

(6.58)

IZI = 0 represents the condition for the lines of action of the constraining
displacement vectors, corresponding to P4, P8, and P121 to pass through a
straight line in space drawn from node 1. This implies that the three forces
P,1i P8t and P12 would then have a zero moment about this line, and conse-
quently it would not be possible to restrain rotation about this line using the
selected force reactions.

Premultiplication of Eq. (6.51) by (6.56) leads directly to the solution for P,n
and V [see Eq. (6.39)]. The form of V naturally depends on the choice of
P,0. However, it is generally advantageous to select the first three forces in
P,n as three orthogonal forces at a node, while the three remaining forces may
be selected in many different ways. In civil engineering structures this latter
choice is governed by the degrees of freedom, which are restrained by the rigid
foundation to which the structure is attached. If forces other than P4, P8,
and P12 are selected for P10, we shall obtain a different transformation matrix
V, and the criterion I ZI 0 for the correct choice of reactive forces will naturally
have different coefficients from those given by Eq. (6.54). The derivation of
the determinant IZI in such cases is analogous to the method presented for
P. _ {P1 P2 P3 P4 P8 P12)-

6.4 DERIVATION OF THE TRANSFORMATION
MATRIX T FROM KINEMATICS

Combining the kinematic relationship (6.33) with the identity w = w, we have

CUrJ-LrJ+LTJw
(6.59)

If the displacement w consist of three deflections Wx, w11, and w0 and three rota-
tions Ox, 8,,, and OZ, the transformation matrix T can be determined directly from
kinematics. However, if only translational displacements are considered, the
matrix T cannot be evaluated directly, and several auxiliary matrices must be
used for its determination. To illustrate this we shall consider the alternative
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form of Eq. (6.59) as

wz

wy

Tuw ;CU*J = LrJ + [

w5

0.

0

L0.

144

(6.60)

where it will be assumed that iv. = w1, w = w2, wz = ws refer to three
orthogonal displacements of a node and 0, 0,,, 0z represent respective notations
about the wx, w,,, and IV,, displacement vectors. If the rigid frame of reference
is established by the translational displacements

w = {w1 wo} (6.61)

the displacements {w4 w6 w6} should be expressible in terms of {0x 0 0z}.
From Eq. (6.60) it follows that

lV1 0m

w = T w,U 112 + T100 OV

Lwi -01

[A-
3V1 01

= BLi + ['1 Or
D

0z

("Al r C
where T,0 = r

l
and T. = [Di

B

Separating Eq. (6.62) into two equations, we have

Om w,

C0 =(I-A)w2
0z U's

0a w4 lvl

DI 0 = 3i' I - B1v2

0z we lvs

(6.62)

(6.63)

(6.64)

(6.65)
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As Eq. (6.64) must be satisfied for all values of {0x 0,, 0,,} and {w, it-, vt,3},

it follows immediately that

C=0 and A=I
Also from Eq. (6.65) we have

w4 1 1 wl

_ = D-1
Lu aJ - D-'B Liv 3J

with the proviso that I DI : 0.
The column matrix {ivx iv,,

related to the six displacements
(6.67), we derive

wd

wE

I

U1

w2

WW'3

114

w5

LIvoJ

wZ

{w3

Substituting Eq. (6.68) into (6.60), we have
w1

w2

CwU1 - T,YOD-1B

T T Tu0D -1B Tu0D-1-uw -
IV6

we

r T,,,, - T,10D-'B
;

T,)OD-1

(6.66)

(6.67)

0x 00 0z} in Eq. (6.60) can now be
IV2 w3 w4 w5 w0}; thus using Eq.

(6.68)

(6.69)
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where T,,,OD-IB T,,UD-1] = I (6.70)

may be easily verified by substituting Eqs. (6.63) for T,,.,,, and T,,,0 with A = I
and C = 0.

Comparing now Eqs. (6.59) and (6.69), we see clearly that

T = [T.. - T oD-'B T,,OD-11
(6.71)

From Eq. (6.60)

U,. = r + T,,,,. it'2 + (6.72)

1V1

100.

x

»'3 z

If we assume that the relative displacements r = 0, that is, the displacements
Ur, are derived only from the rigid-body translations and rotations,

Wi 0x

LAr]r=o = T,l,, i+'2 + - T140 0u (6.73)

N'3 Oz

where the first and second term of the right-hand side of this equation represent
displacements due to rigid-body translations and rotations, respectively.
Equation (6.73) can be used to derive the submatrices T,,,0 and TiO. Rewriting

Eq. (6.65) as

W4 W1 0x

ws = B lv2 + D 0
U,6 It's Oz

(6.65a)

makes it evident that we can interpret this equation kinematically to obtain
the submatrices B and D. For example, if the displacements wa, it,,, and it'6
are taken in the x, y, and 2 directions, respectively, then

B = I (6.74)

0 221 _Y21-

and D = -231 0 x31

Y41 -x41 0

Since the matrix D must be nonsingular,

(6.75)

DI -A 0 (6.76)

Noting also that D = ZT', it follows that the criterion for selecting the dis-
placements w to establish the rigid frame of reference based on kinematics is
the same as the criterion based on equilibrium consideration.
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If instead of the displacement tv4, tvb, and 1+'6 we use rotations 0x, 0y, and 0z,
then from Eq. (6.65a)

B = 0 (6.77)

D = I (6.78)

and T = [T,,. T,,,,] (6.79)

6.5 CONDENSATION OF STIFFNESS MATRICES

The stiffness matrix K for the complete structure relates all forces to their
corresponding displacements. In many applications, however, only a limited
number of external forces are applied to the structure. If only the displace-
ments in the directions of these forces are required, it is generally preferable to
evaluate a new stiffness matrix relating the forces and the corresponding dis-
placements which are of interest in the analysis (see Fig. 6.5).

Suppose that the force-displacement equations for the whole structure are
partitioned so that

K Qx1
(6.80)

1p, K,, K,,,, LQ'I )

and P = 0 (6.81)

while P,, 0 (6.82)

From Eqs. (6.80) and (6.81) it follows that

Ku:Ux + K,,11U, + Q, = 0 (6.83)

and hence U = 'K.US - (6.84)

rte;. 6.5 Sets of forces and displacements used to condense the stiffness matrix K.
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provided

IK,,,II 0 (6.85)

Substituting (6.84) into (6.80), we have that

P. = (Kxr. - K.xuKvv-3Kvr.)U,,, r (Qx - KxvKvv 1Qv)
= K,U7 + Q, (6.86)

where K, = Kxx - (6.87)

represents the condensed stiffness matrix and

Q. = Q. - KxvKvv 'Qu (6.88)

represents the condensed thermal-loading matrix.
Eliminating all rigid-body degrees of freedom from Ux means that Eq. (6.86)

is reduced to (by eliminating appropriate rows and columns)

(6.89)Px, = K,,Ux, + Q,r

and hence Ux, = K,,-'Px, - K,,1-1%, (6.90)

The elimination of the rigid-body degrees of freedom from Ux can also be
carried out before the matrix condensation.

6.6 DERIVATION OF STIFFNESS MATRICES FROM FLEXIBILITY
In some applications it is necessary to determine the stiffness matrix from the
corresponding flexibility matrix. For example, experimental flexibility co-
efficients obtained by a direct measurement of displacements can be used to
obtain experimental stiffness coefficients. The stiffness matrices can be derived
from the corresponding flexibility matrices using a suitable transformation
matrix, which raises the order of the flexibility matrix by one, three, or six for
one-, two-, or three-dimensional structures (or elements), respectively.

Since the subsequent analysis is intended mainly for structural elements
rather than for complete assembled structures, it is preferable to use v instead of
r in Eq. (6.33) so that

%, = v -I- Tw (6.91)

where v represents the element relative displacements for w = 0. No loss of
generality is involved here, and the results obtained can also be used for the
assembled structure.

The element force-displacement relationship, including the effects of tem-
perature, is given by

CS,,,l = [k,,,,, k 011 [w1 [Q.]
J J L J

+

LJ (6.92)
Sll kill, kill, u Qq
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or symbolically

S=ku+Q (6.93)

The element forces S = {S,, must be in equilibrium, and they must satisfy
the equation [see Eq. (6.38)]

S1U + TTS = 0 (6.94)

Substituting S,o and S,, from Eq. (6.92) into (6.94) and noting that

k,0 = k,wT (6.95)

we have

k,,,,w + k,,,0Tu0 + Q + TTQ = 0 (6.96)

which upon substitution of Eq. (6.91) for u, leads to

(T7'k,,,,T + kww)w + TTQ, + Q. = 0
(6.97)

The above equation must be true for any values of v, w, and temperature of the
element. Hence

kuwT = -TTku,, (6.98)

kw = -TTk,,,T - TTku,o

= (6.99)

and Q = -TTQ (6.100)

Substituting Eqs. (6.98) to (6.100) into (6.92), we have

[Sw]

= [TTkuuT -TTkIuu [w1 +
L J

TTQ,41
(6.101)

S.

-kuuT ku,c u, Q,J L

When w = 0, then u, = v, and

Su = Qu (6.102)

v = k,1,t-1S - kuu-1Q = fuuS,b -{- VT (6.103)

where f,,, = k,,,, I (6.104)

and vT = -k,,,, 'Q _ -f,,,,Q, (6.105)

Using Eqs. (6.104) and (6.105), we can write the force-displacement relationship
as

Sw1 _ III(TTf,,,-'T -TTfuu 1 w11I III( TTf, 1vT11

CS,+J - L-fuu1T
fuu-1.....11U,

J + L -fau_1VT
[TT w

l= I]f,,1T -I][
+

[TT]
f ua 1VT (6.106)

-I
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St C

u,

6

6

I S.

t/2

ric. 6.6 Pin jointed bar element.

Introducing now

N = [T -I]
it is clear that the stiffness matrix k is expressible by

k = N7'f,,,4-1N

while the thermal loading matrix Q becomes
Q = NT 1

futt VT

(6.107)

(6.108)

(6.109)

As an example of the application of Eqs. (6.108) and (6.109) consider a pin-
jointed bar element as shown in Fig. 6.6. For this case we have

ul = iv and u2 = v + u1 (6.110)

Hence T = 1 (6.111)

and N = [1 -1] (6.112)

From the flexibility analysis of bar elements (see Chap. 7)

f= AE (6.113)

and VT = aTl (6.114)

Thus k = NTf,,,, 1N

-]]= AE[

-1 ] (6.115)= ['][1
[_l]AE

and Q N"'f,,,1vT = aT/ = AEa.TI (6.116)
1 / L I

which agrees with the previously derived results in Sec. 5.2.

6.7 STIFFNESS MATRIX FOR CONSTANT-SHEAR-FLOW PANELS

One of the idealizations used in the matrix force method is a constant-shear-
flow panel with edge members carrying linearly varying axial forces. This
concept was actually inherited from the early methods of analysis of aircraft
stressed-skin construction used since World War II. A typical body-force
diagram for such an idealization is shown in Fig. 6.7. Although this idealization
technique has been used quite extensively for the force methods, no papers have
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lilt,[ 1i
} T T T T T T 1

TlT T T T T T T T T T

fill IiiFl Fl Fl
I I lI fI w+ Ii H

T + T Y - T + Y 1 Ti 4i
3?

fl

fll

fH

f"

rl

wl

rIT T T T T ` T T T T T'
3-*f -.4^ T T T T T

no. 6.7 Plate idealization based on constant-shear-flow panels with
edge members carrying linearly varying axial forces.

been published on its application to the displacement methods. The reasons
for this have perhaps been the restrictive assumption of constant shearing stress
without any normal stresses and the difficulty of including the Poisson's ratio
effects, all of which can be avoided in other panel idealizations, as discussed in
Sec. 5.8.

To demonstrate further the derivation of stiffness from flexibility, we shall
consider the constant-shear-flow panel element. The panel will be assumed to
be of rectangular shape and of constant thickness. The forces acting on the
panel are shown in Fig. 6.8. The shear flow Fl will be used as the element

0

0

(0)

0 S3

(b)

O

FIG. 6.8 Element forces in a constant-shear-flow panel. (a) Force method;
(b) displacement method.
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force in the force method, while the shear flows S1, ... , S., will be designated as
forces for the displacement method.

The stresses and strains in the panel are determined from

and
_ F1

ea,
Gt

(6.117)

where t is panel thickness and G is the shear modulus. The complementary
strain energy of total deformation is obtained from

F12 ab

U'* 2 fff Gt2
dx d1 dz =

2Gt
Flt (6.118)

where a and b denote the panel dimensions. No temperature term is present in
the expression for U,,* since all normal stresses have been assumed to be zero
within the panel. Using, therefore, the generalization of Castigliano's theorem
(part 11), we have that the relative displacement in the panel is given by

119)F = (6Fl f .l0
8F Gt

where f= ab
(6.120)

Gt

is the flexibility matrix of the constant-shear-flow panel.
The equations of equilibrium for the shear flows S1i . . . , S4 are

1 0 1 S1 0

0 1 0 S2 + ']S4 = 0 (6.121)

0 0 1

S.

-1
which after premultiplying by the inverse of the 3 x 3 matrix with {S3 S2 S3}

become

[S2 + 1 S,=0 (6.121a)

3 -1
Comparing now (6.121a) with (6.38), we note that the transformation matrix T
is given by

T = [1 1 -1) (6.122)

Therefore, using

N = [T -1] (6.107)
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we have from (6.108) that

rl

k=NTf-'N=

1 1 -1 -1
I 1 -1 -1

-1 -1 1 1

-1 -1 1 1

(6.123)

Gi
1 -1 -1J=ab

Equation (6.123) represents the stiffness matrix for a constant-shear-flow panel.
The thermal forces Q are absent for this element because VT = 0-

6.8 STIFFNESS MATRIX FOR LINEARLY
VARYING AXIAL-FORCE MEMBERS

The positive directions of the element forces for an axial-force element are
shown in Fig. 6.9. The axial force Fin the element is given by

F=-(1-X)F1+IF2 (6.124)

The temperature variation will also be assumed to vary linearly, so that

T=(1-)T1+T2 (6.125)

where Tl and T2 denote the temperatures at x = 0 and 1, respectively. The
energy Ut is then evaluated from

f[F
U'* 2 JJ EA2

dx dA -+ -JJ A aT clx dA (6.126)

Subsequent differentiation of (6.126) with respect to Fl and F2 leads to

CUs] 6EA[-1 2] [F2J + 6 [ Tl + 2TT

z)1

2

=fF+v2. J

F, - F2 SZ ---C
S,

(6.127)

(a) (b)

riG. 6.9 Element forces in a member with linearly varying axial force.
(a) Force method; (b) displacement method.
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1 2 1

where f =
6EA 1 2

(6.128)

is the element flexibility and

0'.1 (2T, + T2)1
V21 - (6.129)z,

6 T1+2Tz
represents the relative thermal expansion.*

The equation of equilibrium for the shear flow S, and concentrated forces S.
and S3 in Fig. 6.9 is given by

S11+Sz+S3=0
or in matrix form

S1 l zS1+ =0
1 1 Sa

from which we obtain

11171

T=

and N=[T -I1=
1

1

Hence, using (6.108) and (6.109), we get

1

1

k NTf-'N -1
0

2AE
1

1
1 -1 0

1 2AE 2 1 1

0 1 [1 2] 1

-1

12

3

1

3

1

2 1

1 2

0 -1

(6.130)

(6.130a)

(6.131)

(6.132)

(6.133)

* The matrices f and yr can also be determined using the force F, in the opposite direction
to that shown in Fig. 6.9.
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and Q = N7'f-'VT

F
1

'_1

I I 22AE 1 71 -(2T, -{- T,)1

-1 0

[
! 1 2 6 L T1 T 2T. J

0 -1
-TI + T2

1

= aEA (6.134)
T,

6.9 ANALYSIS OF A PIN-JOINTED
TRUSS BY THE DISPLACEMENT METHOD

As the first example of the displacement analysis, we shall consider the pin-
jointed truss shown in Fig. 6.10. The structure is loaded by a vertical force of
1,000 lb at node 1, and all members are kept at the temperature at which the
structure was initially assembled, with the exception of member 3, whose
temperature is T. The numbering system for the nodes, members, and dis-
placements is indicated in Fig. 6.10, while all other pertinent data are given in
Table 6.1. In Table 6.1, location of the p-q direction is identified by the node
numbers, and the direction cosines have been obtained from the node co-
ordinates in the datum system Roy. The Young's modulus of the material will
be assumed to be 10 x 108 lb/in.2

The stiffness matrix for a pin jointed bar, in a local coordinate system, is
given by

ktn = At' Etrl 1 1

Ito [-1
1

FIG. 6.10 Element and displacement
numbering system.
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TABLE 6.1

Cross-sectional Direction cosines
Member No. area, Length, Location

i in.' in. p-q !,Q m,Q

1 1.0 20 3,1 1.0 0

2 V2/2 20V'2 4,1 V2/2 V'2/2

3 1.0 20 1,2 0 -1.0

4 2/2 20'2 3,2 ''2/2 -V/2
5 1.0 20 4,2 1.0 0

6 1.0 20 3,4 0 -1.0

To obtain stiffnesses in the datum system, we require the transformation
matrices Au). For bar elements

A(t) = rlvo mva 0 0 1
10 0 1", M"]

Hence, using the information in Table 6.1, we obtain matrices

5 6 1 2

A(u = I 0 0 0 A(a)

0 0 1

01

A(3) =

A(s) =

7 8 3 4

11000]
0 0 1 0

A(e)

7 8 1 2

Cc c 0 0]

0 0 c c

A(a) =

5 6 3 4

Cc -c 0

-C0 0 C c

5 6 7 8

CO -1 0 -01
0 0 0 1

where c = \/2 and the column numbers refer to the structure displacements,
as indicated in Fig. 6.10. The stiffness matrices for individual elements are then
computed from
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Hence
5 6 1 2

5 1 0 -1 0

kl') = 6 0 0 0 0
0.5 x 101 lb/in.

1 -1 0 1 0

2 0 0 0 0-

7 8 1 2

7 1 1 -1 -1

k(2) =
8 I 1 -1 -1

0.125 x 10° lb/in.
1 -l -1 1 1

2 -1 -1 1 1

1 2 3 4

1 ro 0 0 0-1

k(3) = 2 0 1 0 -1
0.5 x 101 lb/in.

3 0 0 0 0

4 0 -1 0 1

5 6 3 4

5 1 -1 -1 1

6 -1 1 1 -1
kca)

3 -1 1 1
-1 0.125 x 10° lb/in.

4 1 -1 -1 1

7 8 3 4

7 I 0 -1 0

klb) = 8 0 0 0 0
0.5 x 10° lb/in.

3 -1 0 1 0

4 0 0 0 0-

5 6 7 8

5 0 0 0 0

6 0 1 0 -1
k(G) = 0.5 x 101 lb/in.

7 0 0 0 0

8 0 -1 0 1

In the present example we have only one nonzero thermal-force matrix

Q(3) = [1]1o7T
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which in the datum system becomes

1 0

Q(3) _ (X(3))TQ(3) =
2 - 1
3 0

4 1

10'.T lb

The element stiffness matrices are then combined into the stiffness matrix of the
assembled structure. This leads to

1 5

2 1 5 Symmetric

3 0 0 5

4 0 -4 -1 5

K= 0.125 x 10° lb/in.
5 -4 0 -1 1 5

6 0 0 1 -1 -1 5

7 -1 -1 -4 0 0 0 5

8 -1 -1 0 0 0 -4 1 5

1 2 3 4 5 6 7 8

Similarly, the thermal-force matrices Q(') are combined to form

1 2 3 4 5 6 7 8

Q= {0 -1 0 1 0 0 0 0}107aT lb

Noting that displacements 6 to 8 are all equal to zero, we may write the equi-

librium equation

Pr = K,.U,. + Qr

as

1 2 3 4

1 0 1 '5 1 0 0 U1 1 0-

2 103 2 1 5 0 -4
0.125 x 106

U2
+

2 -1
101ocT

3 0 3 0 0 5 -1 U3 3 0

4 0 4 0 -4 -1 5 U4 4 1

Hence Ur = K, '(Pr - Qr) (6.19)
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becomes

U, 10 -6 -1 -5 0 0-

U2 -6 30 5 25 103 1

U3 = 1 r X

10_a

-1 5 10 6 0 + 0 107 .T

U4 _-5 25 6 30 0 -1

1[-30 5
_ ,2k x 10-3

5

[15]
1

10a.T in.

25

The displacements of the nodes (joints) can now be used to compute forces and
stresses in individual members in the structure.

It should be understood that this example and all other examples in the text
have been introduced to illustrate particular points in the general theory, and in
order to simplify the presentation they have had to be restricted to relatively
trivial problems. For complex structures with a large number of degrees of
freedom the required matrix operations would have to be performed on a
computer.

6.10 ANALYSIS OF A CANTILEVER
BEAM BY THE DISPLACEMENT METHOD

As the second example we shall analyze the cantilever beam shown in Fig. 6.11.
The beam is idealized into two beam elements. The applied loading consists of
a transverse load P3, concentrated moments P, and P., and a temperature
distribution through the cross section but constant along the length of the beam.

By selecting the datum axis ox to coincide with the beam axis we can use the
stillness matrices directly in the local system to obtain the stiffness of the
assembled structure.

Since no axial forces are applied, we can eliminate the corresponding dis-
placements and use condensed stiffness matrices for the transverse deflections
and rotations. Formal matrix condensation as explained in Sec. 6.5, however,

(1) A-I\ (2)

t FIG.6.11 Element and displacement num-
bering system.
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is not required, because the coupling coefficients for axial and transverse dis-
placements in the complete matrix are all equal to zero [see Eq. (5.116)]. Hence
the stiffness matrices for the two elements are given by

1 2 3 4
1 12 61 -12 61

Ell 61 412 -61 212
k(1) =

3
1 3 -12 -61 12 -6/

4 61 2/2 -61 412

3 4 5 6

3 12 61 -12 61

EI4 61 412 -61 2/2
(2)k

/2 5 -12 -6/ 12 -61
6 61 2/2 -6/ 412

where, as before, the row and column numbers refer to the force and displace-
ment numbering system.

The thermal-force matrices are determined from

1 0 3 0

Q(1) =
2 -MTZ

and Q(2) = 4 -MTz
3 0 5 0

4 MTa 6 MTz

where MTY =J aETy dA

Assembling K and Q for the complete beam, we have

1

2

12

61 412 Symmetric

3 12 6/ 24El - -K _
134 61 ;2/2 0 812

5 0 0 -12 -61 1 2

6 0 0 61 212 - 61 412

1 2 3 4 5 6

1 2 3 4 5 6

and Q = {0 -MTZ 0 0 0 MTa}
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Hence P, = KU, + Q,,

is therefore written as

3 4 6

P3 3 2 4 0 6/ U3 0

P4 _ f 4 0 812 2/2 U4 + 0

P. 6 6/ 2/2 4/2 Ue M rz

Inversion of the 3 x 3 matrix in the above equation leads to

U3 3 712 3/ -12 P8 0

U° 96E14
31 15 -12 P, - 0

U.

6 -121 -12 48 Pe Mrz

161

6.11 EQUIVALENT CONCENTRATED FORCES

The actual applied loads are usually distributed, e.g., pressure loading, on
structural elements, and therefore a technique is required for determining
equivalent concentrated forces at the location and direction of the element
forces. These equivalent forces can be resolved in the direction of the datum
coordinate system and then summed up at each node to obtain the total applied-
loading matrix P. Furthermore, concentrated forces may be applied at points
other than the nodes of an element, and such cases also require the determination
of equivalent forces at the nodes. The equivalent concentrated forces can be
obtained directly from an energy approach which is consistent with the deter-
mination of stiffness matrices for structural elements.

The distributed loading will be represented by the matrix of surface forces ',
and the equivalent concentrated forces in the directions of the element dis-
placements U or forces S will be represented by Pec,aivalent. Equating the
virtual work 6W of the applied distributed forces to the virtual work of the
equivalent concentrated forces, we have

6W = f bud' dS = OUT Pegnlvalent (6.135)
Js

where bu denotes the distribution of virtual displacements and W represents
virtual displacements in the directions of the forces S. From the relationship

u = au (4.1)
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it follows immediately that

Ou=aOU (6.136)

Substitution of Eq. (6.136) into (6.135) leads to

OUT (faTe dS - Pequivalent) = 0 (6.137)

Since the virtual displacements OU are arbitrary, we must have that

Pequtvalent = faT4 dS (6.138)

Equation (6.138) can be used to convert into concentrated forces any distributed
loading 4 acting on a structural element. The special case of concentrated
forces acting at intermediate points can also be included if we note that a con-
centrated load may be represented by an infinite pressure acting over zero area
with the proviso that the product fi dS is equal to the value of the concentrated
load.

As an example we shall consider a beam element subjected to a distributed
loading pv lb/in., as shown in Fig. 6.12. Using the results of Sec. 5.6, we can
show that for this element the matrix a relating the transverse deflections
u = uv to the displacements U = (U1 U4) is given by

a = 1 +X8[[1 - 2 $ + (1 - )(Ds] [ - 2se8 + s +

[3i;2 - 2P + q81 [.. 2 + S3 - J( - 2)je]f] (6.139)

where = xl1 and 4i8 is the shear-deformation parameter used in Sec. 5.6. In
the present example 43, dS = pv1 so that Eq. (6.138) becomes

1

Pequlvalent = f aTPv1 d (6.140)
0

Fto.6.12 Beam element with transverse
loading p lb/in.
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Substituting Eq. (6.139) into (6.140) and then integrating lead to

f 1 -1

pequI 'alert = PvI

2

I

12

1

2

I
12

(6.141)

Equation (6.141) indicates that the equivalent concentrated forces consist not
only of transverse loads f 2 at the ends of the beam but also of end moments of
magnitude pv12!12.

PROBLEMS

6.1 Considering only the transverse deflections and rotations in a beam (Fig. 6.13), we can
eliminate the rigid-body degrees of freedom by assuming that w = (U1 Us) = 0. Using this
assumption, calculate the transformation matrix T relating the total displacements to the
rigid-body displacements in the equation

U, = r + Tw

6.2 Solve Prob. 6.1 with w = (U1 U5) = 0.

6.3 The flexibility matrix for the curved-beam element shown in Fig. 6.14 is given by

R
R' (37r - 8)R2 2(n - 2)R2 2f

4E1
4R 2(nr - 2)R 27r3

where El is the flexural stiffness and R is the radius of the curved (circular arc) element, while
the row and column numbers in f refer to the element relative displacements ul, u,, v9 and the
element forces F1, F2, F respectively. Using the flexibility matrix f, calculate the stiffness
matrix k for this curved-beam element.

FIG. 6.13

1 2 3

t rR° 2R' 4R I
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FIG. 6.14

6.4 Calculate the condensed stiffness matrix K,, for deflections 3 and 5 in the cantilever beam
shown in Fig. 6.13.

6.5 Solve Prob. 6.4 for the deflections 5 and 6. Comment on the result.

6.6 Using Eqs. (6.133) and (6.134), verify that when the element force S1 is eliminated and
T1 = T, = T, the condensed stiffness and thermal-force matrices are reduced to those for a
pin jointed bar element.

6.7 Using the matrix displacement method, determine rotations at points B, C, and D due
to the applied moment M on a uniform beam with multiple supports shown in Fig. 6.15.

FIG. 6.15

6.8 A simple two-dimensional pin-jointed truss, shown in Fig. 6.16, is loaded by a vertical
force of 1,000 lb. The cross-sectional areas of all bars are 0.5 in 2, and Young's modulus is
10 x 108 lb/in.$ Determine all joint displacements and forces in the members by the displace-
ment method. Check the results using equilibrium at joint 1.
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FIG. 6.17

I

I.

9'

6

6.9 A uniform bracket of constant cross-sectional area A and moment of inertia l is built-in
at both ends, as shown in Fig. 6.17. The applied loading consists of forces P1 and P, and a
moment Pa. Using the matrix displacement method of analysis, determine displacements in the
directions of P1i P,, and P,.

6.10 Determine the equivalent concentrated-force matrix Pegntvaient for a beam element
subjected to transverse loading varying linearly from p, at x = 0 to p, at x = /.

6.11 Determine an equivalent concentrated-force matrix for a rectangular plate element
subjected to constant pressure.



CHAPTER 7
FLEXIBILITY PROPERTIES
OF STRUCTURAL
ELEMENTS

In the displacement method of structural analysis we require the stiffness prop-
erty of individual elements, while in the force method we require the inverse of
the stiffness property of the elements. This reciprocal property is described as
the element flexibility, and it may be obtained directly from the stiffness relation-
ships derived in Chap. 5. In this chapter flexibility properties are derived for
the following typical structural elements: pin jointed bars, beams, triangular and
rectangular plates with in-plane forces, solid tetrahedra, constant-shear-flow
panels, linearly varying axial-load members, and rectangular plates in bending.

7.1 METHODS OF DETERMINING ELEMENT
DISPLACEMENT-FORCE RELATIONSHIPS

The fundamental consideration in the matrix force method of analysis is the
determination of the flexibility properties of structural elements. A number of
alternative methods are available for obtaining displacement-force relationships
describing the flexibility properties of the elements. The following methods may
be used :

1. Inversion of the force-displacement equations
2. Unit-load theorem
3. Castigliano's theorem (part II)
4. Solution of differential equations for element displacements

In order to emphasize the dual character of the matrix force and displacement
methods, the flexibility properties of structural elements will be derived first
from the corresponding stiffness equations.
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7.2 INVERSION OF THE FORCE-DISPLACEMENT

EQUATIONS: FLEXIBILITY PROPERTIES OF

PIN-JOINTED BARS AND BEAM ELEMENTS

We start with the equation relating forces to displacements
S' = k' u" + h(')aT(')

where the superscript i denotes the ith element. The matrix SW constitutes a
complete set of forces equal to the number of degrees of freedom assumed on the
element. These forces must be in equilibrium with themselves, which implies
that Eqs. (7.1) are linearly dependent, with the number of dependent relation-
ships being equal to the number of equations of overall equilibrium relevant to a
particular structural element. Thus, for a one-dimensional element there is
only one dependent relationship; for a two-dimensional element, three relation-
ships; and for a three-dimensional element, six relationships. This linear
dependence in Eq. (7.1) makes the stiffness matrix k(') singular, and consequently
the solution for the displacements can be determined only if this dependence is
eliminated. The elimination procedure to be followed is the same as in the case
of the stiffness matrix K for the complete structure. A number of displacements
(equal to the number of rigid-body degrees of freedom) are selected for that
purpose, and the corresponding rows and columns in k(') are eliminated, and
thus all matrices in Eq. (7.1) are reduced in size. To check whether all rigid-
body degrees of freedom have been eliminated, general expressions derived for
the complete assembled structure (see Chap. 6) may be used.

After the elimination of rows and columns Eq. (7.1) becomes
Sr(i) = kr(ilUr(U + hr(`)aT(') (7.2)

where the subscript r has been added to indicate that the order of the original
matrices, as given in Eq. (7.1), is reduced. Solving Eq. (7.2) for displacements
ur('), we get
Ur(i) = v(i) = (kr(f))-1Sr(') - (kr('))-1hP)aT(') (7.3)

where v(') can be interpreted as the matrix of displacements relative to the rigid
frame of reference established by the zero displacements eliminated from the
matrix u('). Equation (7.3) can now be rewritten as

00 = VT') + vT(') (7.4)

where f(t) = (kr('))-1 (7.5)

FU) = Sr(') (7.6)

VT(tl = -(kr(t))-1hr(0OCTW (7.7)

The matrix f(') represents the element flexibility referred to the selected reference
frame, and the matrix v1(') represents relative thermal expansions in the
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element when the forces FM are equal to zero. It should be noted that the
flexibility matrix f(i) and the relative thermal expansions VT(') of an un-
assembled element can take many different forms, depending on the choice of
the rigid frame of reference.

Equation (7.4) can be determined for each structural element separately, and
for the complete structure all these equations can be combined into a single
matrix equation of the form

v = fF + vT (7.8)

where v = {v(i) v(2) v(r) ...} (7.9)

f = [f(I) f(2) ... f(i) ... (7.10)

F = {F(i) F(2) ... F({) ...} (7.11)

VT = {VT(') VT
(2) ... `rTM ...} (7.12)

To demonstrate the method consider the pin jointed bar element shown in Fig.
7.1, for which the stiffness relationship is

I 1

AEr-1
-11 1uz] +

AEaT1-11 (7.13)

where for simplicity the superscripts (f) have been dropped. To eliminate the
rigid-body degree of freedom (only the rigid-body translation along the element
axis is present) we can set either ut = 0 or u2 = 0; thus the element forces F used
in the flexibility relationship will be as shown in Fig. 7.1. When we select
ut = 0 to establish the rigid frame of reference, it follows from Eqs. (7.4) to
(7.7) and (7.13) that

F+aTI (7.14)v
AE

_ I

f
AE

VT = aTl

I

(o)

F F F
----- a- 4

F

(7.15)

(7.16)

(b) (c)

FIG. 7.1 Element forces on a pin jointed bar. (a) Displacement
method; (G) and (c) force method.
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(0)

TFz
FZ-F3

t
(b) (c)

Fic. 7.2 Element forces on a beam element. (a) Displacement method; (b) and
(c) force method.

With ul = 0, v in Eq. (7.14) represents relative displacement of joint 2 with
respect to joint I ; thus, a positive value of v represents extension of the member
while a negative value represents contraction. Similarly, a positive value of vT
(for positive temperature T) represents relative thermal expansion of the bar
element.

For subsequent analysis it will be necessary to use a relationship between the
element forces S and F. It is clear that for the bar element we have

S, -']FS'] = [
I

or in matrix notation

(7.17)

Sc'I = Bc'IF1'I (7.18)

where superscripts (i) have been added to denote the ith element and Bc'I is the
transformation matrix. Equation (7.18) can be written for each element, and
then all such equations can be assembled into a single matrix equation

S = BF (7.19)

where B = [B(l) B121 B" (7.20)

For a beam element there are many possible ways of selecting the frame of
reference: two commonly used ones are shown in Fig. 7.2. The stiffness matrix
k and thermal-load matrix Q for the beam element in two dimensions are given
by Eqs. (5.119) and (5.120). Selecting the independent forces Fl, F2, and Fs, as in
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Fig. 7.2b, it can be shown that
f
AE

0 0

f= 0 (7.21)

(4 + (D' )/3 12

12E1= 2EIZ

0
/2 /

2EIa EIZ J

rLrdA1
VT =

-a.12

2I It Ty dA

al
Ty dA

Iz A

ES, -1 0 0-

(7.22)

and

TSB 0 0 1

Similarly, selecting F1, F2, and F3, as shown in Fig. 7.2c, and noting that S3 =

S2 0 -1 0

S3 0 -1 -1
S4 1 0 0

Sr, 0 1 0

(7.23)

-F2, we obtain

F;i'-E
0 0

f= 0

0

(4 + (Dv)l (2 - (D,)1
12EIa 12EIz

(2 - (D,,)/ (4 + ?11)l
12E! 12EIy

A fATdA 1

(7.24)

f Ty dA I (7.25)vT - I 2i;
OCIZ

fA TydA
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and

Si

S2

S3

S4

S5

Ss

1 1=
0

1 1

0 0 1

(7.26)

F3

Naturally, other combinations of the independent forces on the beam element
are possible, but they will not be discussed here.

7.3 DETERMINATION OF ELEMENT FLEXIBILITY
PROPERTIES BY THE UNIT-LOAD THEOREM

Consider an elastic element, shown in Fig. 7.3, subjected to a set of n forces

F = {F1 F2 - .. Fi Ff .:. (7.27)

and some specified temperature distribution

T = T(x,y,z) (7.28)

The forces F are reacted by a set of statically determinate reactions. The dis-
placements in the direction of these reactions will be used to establish the rigid
frame of reference. Let the displacements, relative to this frame of reference,
corresponding to the forces F be denoted by

v = (VI v2 ... vi v f ... (7.29)

FIG. 7.3 Elastic element subjected to forces
F=(F1 F2 ... F).
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To determine a typical deflection vi we may use the unit-load theorem, so that
[see Eq. (3.88)]

Vi = J Jai dV = f a,Te dV
v

(7.30)

where a, represents the matrix of statically equivalent stresses due to a unit load
in the direction of F; and e is the exact strain matrix due to all applied forces F
and the temperature distribution T. The unit loads can be applied in turn at all
points where the forces are impressed, and hence

v =
J

aTe dV (7.31)
ti

where a = [al a2

a linear system

a = cF (7.33)

where c represents exact stress distribution due to unit forces F. From Eqs.
(2.19) and (7.33) it follows therefore that

e=4a+e7.
= 4 cF + eT (7.34)

which when substituted into Eq. (7.31) leads to

v= Ja7'4cdVF+ dVj'aTeT
v

(7.35)

or v =fF + VT (7.36)

where f =
J

aT4c dV
v

(7.37)

represents the elemental flexibility matrix and

VT =
J

eeT dV (7.38)

is the matrix of relative thermal expansions.
The determination of the statically equivalent stress distributions Cr presents no

special difficulty. On the other hand, the evaluation of the matrix c representing
the exact stress distribution due to the forces F may not be possible, and there-
fore we can only use approximate relationships. The usual approach is to
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select the matrix c so that it will satisfy at least the equations of equilibrium.
Denoting this approximate matrix by c and noting that a = c, we have

f= f dV (7.39)
U

and VT = f V'eT dV
U

(7.40)

Application of the above equations to typical structural elements will be
illustrated in later sections.

7.4 APPLICATION OF CASTIGLIANO'S THEOREM
(PART II) TO DERIVE FLEXIBILITY PROPERTIES

Applying Castigliano's theorem (part 11) [Eq. (3.82)] to a structural element in
Fig. 7.3, we have

vi = J
aft T =coast

(7.41)

By varying the subscript i from I to n we obtain the complete set of relative
displacement-force equations. Symbolically this may be represented by the
differentiation with respect to the force matrix F, that is,

V as
Ud*)T

In performing the differentiation it is important, however, that the comple-
mentary energy of total deformation U,' be expressed only in terms of the
element forces F.

From the results of Chap. 3 it is clear that for linearly elastic structures

U
2
if a7.

e dV -I-
eT

dV (7.43)

Noting that the elastic strain a is given by

e=x-la=4a
it follows that

Ua 21 aTo d V + I aTeT d V

(7.44)

(7.45)
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Assuming now that the stresses a are related to the forces F by the linear
equation

a = cF (7.33)

we find the complementary energy of total deformation to be

U,* = 2 J'FTCTc1CF dV -1-- f!TJeT dV (7.46)

Hence* v =
\

_U: = f cT4c dV F -I- cTeT dV (7.47)aF coast v

which agrees with the result obtained by the unit-load theorem for a = c in
Eq. (7.35).

7.5 SOLUTION OF DIFFERENTIAL EQUATIONS FOR ELEMENT
DISPLACEMENTS TO DERIVE FLEXIBILITY PROPERTIES

The displacement-force relationship for an element can be written fully as

V1

V2

vi

Lvn_

Al J12 f1i fi n-'

f21 f22 f2i f2n

ft1 A2 " ' fit ... fin

n1 fn2 ... fat ... fern _FnJ

VTR

VT1

VTi

(7.48)

A typical flexibility coefficient fi, is interpreted as the displacement in the ith
direction relative to the selected rigid frame of reference due to a unit force in the
jth direction while all other forces (except the reactions) are equal to zero. A
typical coefficient v7., is simply the thermal deflection in the ith direction due to
the specified temperature distribution in the element while all element forces are
equal to zero. Relying on these two definitions, we can use the solutions of
differential equations for displacements due to forces F and the temperature T
to determine the flexibility coefficients and thermal displacements.

7.6 PIN-JOINTED BAR ELEMENTS

The flexibility properties of bar elements have been derived in Sec. 7.2 and are
given by Eqs. (7.15) and (7.16). The transformation matrix B for element
forces in the force and displacement methods is given by Eq. (7.17).

* Sec Sec. A.21 for differentiation of matrices.
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7.7 BEAM ELEMENTS

For a beam element used for three-dimensional problems, the deflections and
rotations will be in the principal planes. Assuming that oy and oz refer to the
principal axes of the beam cross section and selecting a set of independent
element forces, as shown in Fig. 7.4, we obtain the following flexibility matrix,
using the results of Eq. (7.21),

1 2 3 4 5 6rI
1

2

f=3

4

5

6

AE

0 (4 + D,)13 Symmetric

12EIz

0 0
(4 + - :)l3

12EI (7.49)

0 0 0

0 0

0
12

2E-I.

-12
2EI

I

GJ

where G is the shear modulus and J is the Saint-Venant torsion constant of the
cross section. The relative thermal expansions (and rotations) in the direction

FIG. 7.4 Independent forces on a beam

element (force method).
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of forces Fl, ... , FB can be obtained from the results of Eq. (7.22). Hence

1

2

vT = 3

4

Al
fI TdA

21 f Ty dA
z

a12 f
21 JA

0

Tz dA
(7.50)

5 Il
P4

Tz dA

6 - a1 f TydA

Using the equations of overall equilibrium for element forces S in Fig. 5.4 and
F in Fig. 7.4, we can easily demonstrate that the transformation matrix B in the
matrix equations S = BF for the beam element is given by

1 2 3 4 5 6

1 fl-1 0 0 0 0 0-1

2 0 -1 0 0 0 0

3 0 0 -1 0 0 0

4 0 0 0 -1 0 0

5 0 0 -1 0 -1 0

B= 6 0 -1 0 0 0 - 1
(7.51)

7 1 0 0 0 0 0

8 0 1 0 0 0 0

9 0 0 1 0 0 0

10 0 0 0 1 0 0

11 0 0 0 0 1 0

12 0 0 0 0 0 1

For two-dimensional problems involving beam elements the required matrices
are given by Eqs. (7.21) to (7.23), which were derived for the force system shown
in Fig. 7.2b.
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7.8 TRIANGULAR PLATE ELEMENTS (IN-PLANE FORCES)271

The flexibility properties for triangular plate elements with no bending stiffness
will be determined using the unit-load theorem. As in the displacement
method, we shall assume that the stresses within the triangular plate are constant.
The first step is to obtain the element forces, as shown in Fig. 7.5, which are
statically equivalent to the assumed constant-stress field. The procedure for
doing this will be illustrated for the normal stress axx. In Fig. 7.6a the constant-
stress field axx acting on the triangle may be replaced by statically equivalent
forces acting at the midpoints of the triangle. These forces can then be trans-
ferred to the adjacent node points, and hence the S forces become

S1 = M(y31 - Y21)10rxx = iy32taxx S2 = 0

S3 = i(y23 - y21)taxx = iy31taxx S4 = 0 (7.52)

S5 = (y23 + y31)1axx =

1l
2y21 taxx S8 = 0

where, as before, t is the plate thickness (assumed to be constant) and

xii= -x,
yo = Y{ - yf

i, j = 1, 2, 3 (7.53)

Repeating the same procedure for the stresses a,,l, and ax,, in Fig. 7.6b and c
and then collecting the results into a matrix equation, we have

S1

S2

S3

S4

S5

Ss_

Y32 0 -X32

0 -x32 Y32

-y31

0

I

2

Y21

0 x31

X31

0

0

-Y31

-x21

-X21 Y21 J

(7.54)

FIG. 7.5 Element forces on a triangular
plate element (displacement method).
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plc. 7.6 Statically equivalent forces on triangular plate elements. (a) Normal
stress a=,,; (b) normal stress a,,,; (c) shearing stress a.,,.

Out of the six forces S1, ... , Se acting at the vertices of the triangular plate,
only three force systems are linearly independent, because the six forces ob-
viously must be related by three equations of overall equilibrium. Three

independent sets of four forces, one applied force and three reactions, could be

selected, but their selection would be dependent on the orientation of the triangle,

and, in general, it would be different for each element. This situation can be
avoided by selecting three sets of edge forces F1, F2, and F3, as shown in Fig.
7.7; these forces are independent of each other, and they are related to the forces



FLEXIBILITY PROPERTIES OF STRUCTURAL ELEMENTS

F2 S4 F;

Fi

,.x

FIG. 7.7 Independent-force system F on a triangular plate element
(force method).

S1, ... , Se by the matrix equation

179

Si -112 0 131

S2 -m12 0 mai
F1

S3 112 -123 0 (7.55)
F2

S4 m12 -m2S 0
Fa

S5 0 123 - 131

LssJ L 0 m2a -m8I

where 1is and mil denote direction cosines for the direction along the edge fj.
Equation (7.55) is used to define the matrix B in the equation S = BF.

If only F1 forces are applied, the stresses due to this force system can be
determined from Eqs. (7.54) and (7.55). Hence,

21122F1 2m122F1 2112m12F1

th yv
th3 th8 3

(7.56)

where h3 denotes the triangle height measured from vertix 3.
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It can be demonstrated easily that Eqs. (7.56) represent, in fact, a constant
stress

2F1
k712 = !h3

(7.57)

in the direction of the edge 1,2. By cyclic changes of indices in Eqs. (7.56)
stresses due to F2 and F3 can be obtained. Combining the stress equations into
a single matrix equation leads to stress-force relationship

1 1122 1232 1312

6xy

h3 h1 h2

I

n7122 117232 m312

h3 h1 h2

F1

F2

F3

112m12 123m23 131n731

L h3 h1 h2 J
or symbolically in matrix notation,

a = cF

where c =
2 M122 M232 n7312

h3 h1 h2

112m12 123m23 131m31

(7.58)

(7.59)

(7.60)

L h3 h1 h2 J

The matrix c represents statically equivalent stress system due to unit forces F.
Using Eqs. (7.39), (7.40), and (7.60) together with two-dimensional expressions
for4 and e1., we can demonstrate that

f = J
v

sin V3

2

E1

1122
1232

1912h3 191 T12

sin 01 sin 02

cos 02 cot 02 - v sin 02
sin 0,

sin 02 sin 03

cos 01 cot 01 - v sin 0, cos 03 cot 03 - v sin 03

cos 02 cot 02-vsin02 cos 01 cot 01-vsin0,

cos 03 cot 08 - v sin 03

sin 02

sin 03 sin 0,

(7.61)



FLEXIBILITY PROPERTIES OF STRUCTURAL ELEMENTS 181

and VT=J C1'eTdV
n

= a.T 323 (7.62)

S31

S12

where D1, 02, and 03 are the triangle angles shown in Fig. 7.7 and s12, S2.3, and ss,.
represent the lengths of the three sides of the triangle. It is interesting to note
that the relative thermal displacements VT simply represent elongations of the
three sides of the triangle due to the temperature change T, as could be expected
from physical reasoning.

The structural idealization based on the concept of constant stress in triangular
plate elements can be represented by a two-dimensional pin jointed framework
made up by the sides of triangular elements such that when adjacent sides of two
triangular plate elements meet, the corresponding framework elements are
represented by two parallel pin jointed bars. However, in contrast to a real
pin jointed framework, where the flexibility of each unassembled bar element is
independent of other elements, the flexibilities of bar elements in the idealized
framework are coupled in sets of three bars representing the three sides of a
triangular plate element.

Other force systems can also be used to derive the flexibility properties of
triangular plate elements, but it appears that the edge-force systems described
here are advantageous from a computational point of view.

7.9 RECTANGULAR PLATE ELEMENTS (IN-PLANE FORCES)

Figure 7.8 shows a rectangular plate with the element forces S1, . . . , S8.
These forces are linearly dependent since they must be related by the three
equations for the overall equilibrium. Thus it is possible, using the forces
St, . . . , S8, to select five sets of independent force systems. The five
independent force systems F1, ... , F6 selected for the determination of

S6 f
S5

b

ST x

S8I
FIG. 7.8 Element forces on a rectangular

° plate element (displacement method).
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FA`-
F5 ,F; 1-1

F4

F3

Ftc. 7.9 Independent-force systems on a rect-
angular plate element (force method).

flexibility properties of rectangular plate elements are shown in Fig. 7.9. Four
force systems are acting along the four sides of the rectangle, and one system is
acting along the diagonal running from the upper right to the lower left corner.
These force systems are independent of each other, and they are related to the
forces S1, ... , S8 by the matrix equation

0 0 0 -
(1 + /32)1

S1

-P-1 0 0 0
S2 (1+fi2)j

F1
S3 0 -1 0 0 0

F2
S4 1 0 0 0 0

F3 (7.63)
Sb 1

0 1 0 0 F(1 + 92)1 4

S6
Fb

S7 0 0 1 0
(1+132)1

S8

0 0 0 1 0

0 0 -1 0 0

where
b

a
(7.64)

The direct stresses a.. and a,,,, and the shearing stress o within the rectangle
will be assumed to be given by

a==Cl+C277

Qyy = Cs + C4S

dx = Cb

(7.65)
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where c1, . . . , cb are constants and

'1a b
(7.66)

Applying now in turn the force systems F, to F6, we can derive statically
equivalent stress distributions based on Eqs. (7.65) for each force system acting
separately. The resulting stress-force equations can be combined into a single
matrix equation

1
0 -1+3 0 2- 37 F1

77 7 2(1 +
#2)4 Fx

a
2 R2

fl(2-3e;) 0 f3(-1 + 0

2

Fll

6
bt 2(1 + #2)1

$

Fxu

N0 0 0 0

4

2(1 + 192)ti F5

which is represented symbolically as
(7.67)

a = cF

where

(7.68)

1

0 -1 + 37 0 2 317 7
2(1 + f32)4

2_
c f3(2 - 0 f3(-1 + 31:) 0 (7.69)

bt 2(1 + 92)4 E

0 0 0 0
2(1 + ,32)4

Using now Eqs. (7.39), (7.40), and (7.69), we obtain

r 4i

f= I

Et

-v
4

Symmetric

-2/3 -v 4j9

-2 4
-v

fl

-v

R2 - v I - v///32 f32 -v 1 - V#2
I + /32)1 fl( 1 + f32)1 (I + N2)1 fl( 1 + f32)s

1 +192

flJ

(7.70)
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and v7. = axT (7.71)

L(1 + '92)41
The relative thermal displacements vT simply represent elongations of the four
edges and the diagonal due to the temperature change T.

The structural idealization of structures made up from rectangular plates may
be thought of as being represented by a pin jointed framework with bars rep-
resenting sides of the rectangular plates and one of their diagonals such that
when adjacent sides of two rectangular plate elements meet, the corresponding
framework elements are represented by two parallel pin jointed bars. The
flexibilities of such idealized bar elements, however, are coupled in sets of five
bars corresponding to the five independent force systems F1, ... , Fb on each
rectangular plate element.

7.10 'TETRAHEDRON ELEMENTS273

The assumption of constant stresses within the element can also be used on the
solid tetrahedron to establish its flexibility properties required in the matrix
force method of analysis. The flexibility properties of the tetrahedron element
can be determined most conveniently for a set of edge-force systems acting along
the six edges of the tetrahedron.

The six independent force systems F1, ... , FB will be assumed to be located
along the edges identified according to Table 7.1. The numbering i for the
force systems also will be used to specify directions of the edges on which these
systems are acting. Sequences other than those given in Table 7.1 may be
selected, but once a sequence has been chosen, it must be adhered to throughout
the analysis.

TABLE 7.1 LOCATION OF INDE-
PENDENT FORCE SYSTEMS ON TETRA-

HEDRON ELEMENTS

Force system or Location
direction i (nodes)

1 1,2

2 2,3

3 3,4
4 4,1
5 1.3

6 2,4



FLEXIBILITY PROPERTIES OF STRUCTURAL ELEMENTS 185

Y

F, S3 4 T1a{ S1o
F4

F3 , I F6
S12 S11

FIG. 7.10 Independent-force system F on a tetrahedron element.

The forces F and S are
by

shown in Fig. 7.10. The relationship S = BF is given

FS, I- -11 0 0 14 -/5 0

S2 -ml 0 0 m4 -m5 0

S3 -n1 0 0 n4 -n5 0

S4 11 -12 0 0 0 -16 F,

S5 MI. -m2 0 0 0 -me F2

Se nl -n2 0 0 0 -n8 F3
(7.72)

S7 0 12 -13 0 15 0 F4

S8 0 m2 -m3 0 m5 0 F5

S9 0 n2 -n3 0 n5 0 F6

S10 0 0 13 -l4 0 16

S11 0 0 M3 -m4 0 me

S12 0 0 n3 -n4 0 no

where 1t, m., and nj denote here the direction cosines for the directions i, as
specified in Table 7.1.
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FIG. 7.11 Statically equivalent stress distribution due to
the force system Ft.

°i

If the force system Fi is applied alone, an equivalent stress system, in equilib-
rium with the applied forces, may be taken as a constant tensile stress in the
direction 1. Figure 7.11 makes it evident that this stress is given by

_ 3F1
ai

A
(7.73)

in which Al represents area of the projection of the tetrahedron onto a plane
normal to direction 1. The stress al can then be resolved into stress com-
ponents in the x, y, z coordinate system. By cyclic changes of subscripts,
contributions from other force systems can be obtained, and the results can be
expressed by the matrix equation

a=cF

where a = (a--x

F=(Fl F6)

0uu o.zz

(7.74)

0 v avz a:x} (7.75)

(7.76)



FLEXIBILITY PROPERTIES OF STRUCTURAL ELEMENTS 187

and

112 122 132 142 162 162

Al A2 A3 A4 A6 A6

m12 m22 m32 m42 m62 m62

Al A2 A3 A4 A6 A6

n12 n22 n32 n42 n62 ne2

Al A2 A3 A4 A6 A6
c=3 (7.77)

11m1 12m2 13m3 14m4 16m6 16m6

Al A2 A3 A4 A6 A6

mint m2n2 mina m4n4 m5n6 m6n6

Al A2 A3 A4 A6 A6

n1l1 n2l2 n313 n414 n616 n616

_ Al A2 A3 A4 A6 A6

Using Eqs. (7.39) and (7.77) together with the three-dimensional expression for
4) we can demonstrate that

f = [ff] i, j = 1, 2, ... , 6 (7.78)

with typical coefficient

fii = EV [(1 + v) cost 0i.i - v] (7.79)

where si represents the length of the edge corresponding to the ith force system
and 0i,i is the angle between the i and j directions.

Similarly, from Eqs. (7.40) and (7.77) it can be shown that

VT = aT{sl s2 s3 s4 Sr, S6} (7.80)

In deriving Eqs. (7.78) and (7.80), the following equation for the volume of the
element was used:

V= siAi i= 1,2,...,6
3

A single equation valid for all the fit coefficients in the flexibility matrix f
greatly simplifies the necessary computer programming. Furthermore, the
thermal-displacement matrix VT is also easy to evaluate, since it simply
represents elongations of the six sides of the tetrahedron caused by the tempera-
ture change T.
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The structural idealization based on the concept of constant stress distribution
within solid tetrahedron elements can be represented by a three-dimensional pin-
jointed framework made up of the sides of tetrahedron elements such that when
adjacent sides of two tetrahedron elements meet, the corresponding framework
elements are represented by two parallel pin jointed bars. The flexibilities of bar
elements in the idealized framework structure are coupled in sets of six bars rep-
resenting the six edges of a tetrahedron element.

7.11 CONSTANT-SHEAR-FLOW PANELS

The determination of flexibility properties for a constant-shear-flow panel has
been discussed in Sec. 6.7. The flexibility matrix is given by Eq. (6.120). No
thermal deformation matrix vT exists for this element since no direct stresses
were allowed in this idealization.

7.12 LINEARLY VARYING AXIAL-FORCE MEMBERS

The flexibility properties for this element have been presented in Sec. 6.8. The
flexibility and thermal deformation matrices are given by Eqs. (6.128) and
(6.129), respectively.

7.13 RECTANGULAR PLATES IN BENDING
The bending and in-plane deformations for small deflections in flat plates are
uncoupled, and therefore the bending and in-plane flexibilities can be con-
sidered separately. For rectangular plates in bending we considered (Sec. 5.12)
twelve element forces S1, ... , S121 shown in Fig. 7.12. These twelve forces are

FIG.7.12 Element forces on a rectangular plate in bending (dis-
placement method).
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related by three equations of equilibrium, and consequently only nine of these
forces are linearly independent. Many choices are possible for selecting the
independent forces to be used for the flexibility matrix. The independent force
systems we shall select are shown in Fig. 7.13. These systems consist of four
sets of symmetric moments F,, F3i F6, and F7 applied at the four sides of the
rectangle, four sets of antisymmetric moments F2, F4, Fe, and F8 also applied at
the sides, and one set of four forces normal to the plate and applied at the
corners. It should be noted from Fig. 7.13 that the antisymmetric moments
require corner forces for equilibrium.

It can be easily seen from Figs. 7.12 and 7.13 that the equation S = BF is
simply

1 2 3 4 5 6 7 8 9

I r 0 2
0 0 0 0 0 2 -1

S, 2 I 1 0 0 0 0 0

a
0 0

S2
3 0 0 0 0 0 0 -1 1 0 rFS3

4 0
2

0
2

0 0 0 0 1 F2
S4 6

F3
S5 5 -1 1 0 0 0 0 0 0 0

F4
S6 6 0 0 -1 -1 0 0 0 0 0

Si

2 2

F6 (7.81)
7 0 0 0 0 0 0 -1 F

S8 a b
6

so
8 0 0 0 0 -1 -1 0 0 0 F7

S
9 0 0 1 -1 0 0 0 0 0

F
10

2

L 9JSl l I0 0 0 0 0 0 0
a

1
6

II 0 0 0 0 1 -1 0 0 0

12 0 0 0 0 0 0 1 1 0

Assuming that the normal stresses vary linearly and the shearing stresses are
constant, we can obtain a relationship between the statically equivalent stresses
a = {or,. oy,; and the element forces F = (Fl
ship is of the form

F9). This relation-

a = cF (7.82)
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F F3

' 1-1/

F7 F7

FIG. 7.13 Statically equivalent forces on rectangular plates in bending (stresses shown
are for the surface at z = 1/2).
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where c can be shown to be given by

I

2

3

6

7

8

9

0

0

2(2-34) 01
a

a

(2 - 34)(1 - 2-7) 0

(-1 + 377) 0 0

b (-1 + 317)(l - 24) 0 0

0
2(-1+34)

0
a

0 a (-1 + 34)(-1 + 217) 0

2

b
(2 - 377) 0 0

2 (2 - 377)(-1 + 24) 0 0

Using Eqs. (7.39) and (7.83), we obtain the following flexibility matrix

1I
4b

a

2

3

4

_ 12f
T13 5

6

7

9

0 4b

3a

-V v

0 0 1J

4a

b

-v v 0

Symmetric

4a

3b

-2b
0 -v v

4b

a a

26 4b
0 3a -v v 0 3a

-2a
-v -v

b
0 -v V

4a

b

v v 0

36

-v v 0 36

0 0 0 0 0 0 0 0 2(1 + v)ab
1 2 3 4 5 6 7 8 9

(7.83)

(7.84)
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Assuming that the temperature throughout the element is given by

T=Tm+AT j (7.85)

where T. is a constant mean temperature and AT is a constant temperature
difference between upper and lower surfaces, we can determine the thermal de-
formation matrix VT from Eq. (7.40). Hence

1 2 3 4 5 6 7 8 9

VT
=aAT (b

0 a 0 b 0 a 0 0)
I

(7.86)

PROBLEMS

7.1 Derive the flexibility matrix for a pin jointed bar element with the cross-sectional area
varying linearly from A, to A2.

7.2 Using Castigliano's theorem (part II), demonstrate that if the shear-deformation effects
are neglected, the flexibility matrix for the curved-beam element in Fig. 6.14 is given by

1 2 3

1

R
erR2 2R2 4R

f 4E! 2
2R2 (3 - 8)R2 2(vr - 2)R

3 4R 2(7r - 2)R 2ir

7.3 Determine the thermal deformations matrix v, for the curved-beam element in Fig.
6.14.

7.4 Solve Prob. 7.2 when the effects of shear deformations are included.

7.5 Discuss the derivation of a flexibility matrix for the triangular plate element in bending
using concepts similar to those for the rectangular plate in Sec. 7.13.

7.6 Explain why the stiffness coefficients k;, depend on the number of displacements con-
sidered in the stiffness matrix, whereas the flexibility coefficients j;, (influence coefficients) are
independent of the number of displacements.



CHAPTER 8
THE MATRIX
FORCE METHOD

The force method of analysis is based on the equations of equilibrium ex-
pressed in terms of the element forces F introduced in Chap. 7. For some
structures these equations are sufficient to determine all the forces F and hence
the element stresses and displacements. Such structures are said to be statically
determinate. For general applications, however, the number of element forces
F exceeds the number of available equations of equilibrium, and the structure
is then said to be statically indeterminate (or redundant). For such cases the
equations of equilibrium are insufficient to obtain solutions for the element
forces, and therefore additional equations are required. These additional
equations are supplied by the compatibility conditions on displacements. In
this chapter the general formulation of the force method of analysis is presented,
leading to the equilibrium and compatibility matrix equations. The derivation
of the latter equations is obtained from the unit-load theorem generalized for
the discrete-element structural idealization.

8.1 MATRIX FORMULATION OF THE UNIT-LOAD
THEOREM FOR EXTERNAL-FORCE SYSTEMS

The formulation of the unit-load theorem in Chap. 3 was based on a continuous
elastic system subjected to a set of external forces and known temperature
distribution. Although the general theorem for continuous systems could be
modified directly so as to be applicable to discrete-element systems, it is prefer-
able to derive the equivalent matrix form of the unit-load theorem ab initio.
To derive this theorem, a virtual load SP in the direction of the displacement r
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is applied in a discrete-element structure subjected to a system of forces and
temperature changes which induce internal-element forces given by the matrix
F. The complementary virtual work is then

6W* = r dP (8.1)

If we now consider a typical structural element, it can easily be observed that
because of the virtual force 6P the virtual complementary energy of total
deformation on the ith element is given by

[6U,i]'" = [OF(")Jlv('' (8.2)

Hence for the complete structure

SUB = 6FT v (8.3)

where OF = {8F"1) OF(2) . . 8F") . } (8.4)

which need only satisfy equations of equilibrium and be in balance with the
virtual force OP.

For linear elasticity Eq. (8.4) can be expressed as

OF = {P(1) r(2) ... )F(i) ...} SP = 6 8P (8.5)

where 6 represents element forces due to OF = 1. From the principle of
virtual forces 6 W* = 6Ur1, it follows that

r 6P = 6TV OP (8.6)

and hence r = 6TV (8.7)

which, using Eq. (7.8), becomes

r = 6T(fF + VT) (8.8)

Equation (8.8) represents the matrix form of the unit-load theorem for a
single displacement r. If, however, n displacements are required as a result of
some specified loading and temperature condition, all these displacements can
still be obtained from Eq. (8.8) provided 6 consists of n columns, representing
statically equivalent element forces due to unit loads applied in turn in the
specified n directions. For such cases, the displacements are determined
directly from

r = 6TV = 6T(fF + vT) (8.9)

where r is a column matrix of the required displacements due to some specified
loading conditions for which F and VT are known and 6 represents statically
equivalent element forces due to unit external forces applied in the directions
of r.

It is important to realize that 6 need satisfy only the internal and external
equations of equilibrium, a fact which can greatly reduce the amount of com-
puting in determining the displacements. The advantages of using a statically
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FIG. 8.1 Application of the unit-load theorem
to a multispar wing structure.

equivalent force system for 6 will be apparent from the example to be discussed
next. Suppose it is required to determine vertical deflection of a point on the
wing structure shown in Fig. 8.1 subjected to a system of external forces and
temperature distribution for which the exact distribution of element forces and
relative thermal expansions is known. The simplest statically equivalent force
system 6 due to a unit load P = I applied in the direction of the required
displacement can be evaluated for a single cantilever shown by full lines in
Fig. 8.1. Clearly the products 6TfF and 6TVT in Eq. (8.9) have only to be
taken over the structural elements in the cantilever, since 6 is elsewhere zero,
and this naturally results in a considerable saving in computing effort.

The unit-load theorem is also applicable to a whole system of external forces,
but the physical interpretation of the results in such cases may be possible only
for specific distributions of the externally applied unit force system. One such
system, which has practical applications, is a set of three parallel self-equilibrating
forces acting in one plane. To illustrate this, consider the wing structure
shown in Fig. 8.2 subjected to a specified loading and temperature for which
the element forces F and relative thermal expansions VT are known. A system
of three self-equilibrating forces PA, PB, and PC is then applied at the wing tip,
and it will be assumed that

PC = 1 (8.10)

Since the system is a self-equilibrating one, we must have

PA+PB+PC=O (8.11)

and PCa + PBC = 0 (8.12)

Solving for PA and PB gives

b
PA (8.13)

a
PB = _ c (8.14)
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to a system of external forces.

J_L fJ
b

Furthermore, it will be assumed that the actual deflections at the points A,
B, and C are r11, rB, and rc, respectively. Thus, if 6,1 is the statically equivalent
element force distribution due to PA, it is clear that the application of Eq. (8.9)
leads to

6,IT(fF + VT)
6

b

Similarly, for the PB and Pc forces applied separately

a
fiBT(fF + v2)

c rn

and 6cT(fF + VT) = 1'0

Adding Eqs. (8.15) to (8.17), we have

(6.A 7 + 6BT + 6cT)(fF + VT) _ 6in(AfF + "T)

a b

(8.15)

(8.16)

(8.17)

(8.18)

where 6dBC represents a statically equivalent distribution of element forces
due to P,1, PB, and PC applied simultaneously. By rearranging Eq. (8.18) it
can be shown that

6ABC(f + VT) = 1'C - 1'A - (1'B - '.A) C (8.19)

The right side of Eq. (8.19) represents deflection of the point C relative to a
straight line joining the displaced positions of points A and B (see Fig. 8.3).

A somewhat similar result could be obtained if the unit load were reacted
by three parallel noncoplanar forces. Here the deflection obtained from the
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FIG. 8.3 Deflection of point C relative to a
straight line joining deflected positions of A
and B.

unit-load theorem based on such a force system would be equal to the deflection
of the point at which the unit load is applied relative to a plane passing through
the deflected positions of the reaction points.

8.2 MATRIX FORMULATION OF THE UNIT-LOAD
THEOREM FOR INTERNAL-FORCE SYSTEMS:
SELF-EQUILIBRATING FORCE SYSTEMS

So far, the unit-load theorem has been applied to external forces. This theorem,
however, can be generalized so as to be applicable to internal forces. In such
cases the resulting displacements, obtained from the theorem, represent internal
relative displacements which in order to satisfy continuity of deformations
(compatibility conditions) must be equal to zero. To illustrate this, consider a
two-dimensional redundant pin jointed truss subjected to external loads Pl
and P2 and some specified temperature distribution T (see Fig. 8.4). The
relative displacements v on individual elements due to PI and PQ and the
temperature T applied to the structure are given by

v = fF + vT (8.20)

where f is the diagonal matrix of element flexibilities, F is the column matrix
of element forces, and VT is the column matrix of relative thermal displacements
calculated for the temperature distribution T. If we now introduce a fictitious
cut in the diagonal member 1,4 near joint 1, then in order to maintain equilib-
rium with the external loading and thermal forces which may arise from the

FIG. 8.4 Redundant pin jointed truss under
external loads P, and P2.
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P2 1P FiG. 8.5 Redundant forces X applied across
the cut in member 1,4.

temperature distribution the force F2, which existed in the member before the
cut was introduced, must be supplied by some external means. It should be
observed that by introducing the cut in the diagonal member 1,4 this particular
structure is reduced to a statically determinate one.

If a unit load X. is applied at the cut in the direction 4,1, as shown in Fig.
8.5, the unit-load theorem gives a deflection ra which is

ra = 6OT(fF + VT) (8.21)

where 6a represents the matrix of statically equivalent element forces due to
X. = 1 (note that F includes force Fa in the cut member 1,4). If instead of
X. a unit force Xb is applied in the direction 1,4, then from the unit-load theorem
it follows that

rb = 6b7(fF + VT) (8.22)

where 6b represents the matrix of statically equivalent element forces due to
Xb = I. Since the direction of Xb is opposite to that of X,,,

ra = -rb = r (8.23)

where r represents the actual displacement of node I in the direction 4,1.
From Eq. (8.23) it follows that

ra + rb = 0 (8.24)

and this may be interpreted as representing the relative displacement across the
cut. Substitution of Eqs. (8.21) and (8.22) into (8.24) leads to

(6a + 6b) '(fF + VT) = 0 (8.25)

or 6,,''fF + 6c 1'v7. = 0 (8.26)

where 6Q = 6a + 6b (8.27)

The matrix can be interpreted as internal force system representing statically
equivalent element forces due to a unit force applied across the fictitious cut.
This system requires no external reaction forces, and it may therefore be
described as a self-equilibrating force system. It need not be associated with
any real physical cuts, since the cuts are introduced only as a means of identifying
the location of the unit force.
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Any self-equilibrating force system may be thought of as being introduced as
the result of self-straining action, which incidentally is possible only in a
redundant structure. For example, if in the two-dimensional truss in Fig. 8.4
all elements (pin jointed bars) are assembled to form the truss structure with the
exception of the diagonal member 1,4, which is found to be too short, then by
stretching this member to the required length (by pre-tension), attaching it to the
structure, and releasing the pre-tension, a self-equilibrating force system will
have been induced. Naturally, the amount of lack of fit can be adjusted to
make the final value of the element force equal to a unit value, and the internal-
force distribution will then be exactly represented by the matrix fi..

The concept of self-equilibrating force systems can be applied to any redun-
dant structure. In a statically determinate structure, self-equilibrating systems
are not possible, since any cuts reduce the structure to a mechanism. Another
example of a self-equilibrating system is shown in Fig. 8.6, where a unit internal
force is introduced in the flange of a box-beam structure.

If the structure is redundant, we can introduce a number of cuts equal to
the degree of redundancy, while the structure is reduced to a statically deter-
minate system. For each cut Eq. (8.26) may be formulated, and thus for n
cuts the following set of equations is obtained

6x,?'(fF + VT) = 0

6x2T(fF + VT) = 0 (8.28)

6Y.T(fF + VT) = 0

where the second subscript with 6 identifies the unit internal load on the structure.
The above equations can be combined into a single matrix equation

fix 11F + bxTVT = 0 (8.29)

or bxTV = 0 (8.29a)

FIG. 8.6 Unit self-equilibrating force system
in a box-beam structure.
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where bx = [6x, 6x, - - - 6xn] (8.30)

If the cut structure is subjected to a set of externally applied forces and
temperature distribution T, the element forces can be calculated directly from
equations of statics (equations of equilibrium). The element forces are naturally
proportional to the applied loading, and hence

F'cut structure = b0P (8.31)

where P = {P1 P2 . (8.32)

and bo is a rectangular matrix in which columns represent element forces due
to P1 = 1, P2 = 1, . . . , respectively. In order to preserve continuity of
deformations forces X1, X2, . . . must be applied across the cuts, and the mag-
nitudes of these forces will depend on the amount of "gap" across the cut
caused by the external loading and temperature. The actual element forces
in the uncut structure must therefore be given by

F=boP+bxX=[bo bx][ ]X

Substituting now Eq. (8.33) into (8.29), we have

bxTfboP + bxTfbxX + bxTvr = 0

(8.33)

(8.34)

Equation (8.34) may be interpreted as the compatibility equation for a statically
indeterminate structure. The unknown forces X across the cuts may be de-
termined directly from Eq. (8.34) by premultiplying this equation by (bx Tfbx)-1.
This leads to

X = -(bxTfbx)-1(bxTfboP + bxTvr) (8.35)

8.3 MATRIX FORMULATION OF THE FORCE ANALYSIS:
JORDANIAN ELIMINATION TECHNIQUE

The first step in the force method of analysis is the formulation of equilibrium
equations. The components of the element forces in the directions of all the
degrees of freedom at a node joint of the idealized structure are algebraically
summed up and then equated to the corresponding components of the ex-
ternally applied forces. This is carried out for all joints, including those used
to establish either a rigid frame of reference or structure supports. The
structure reactions, either statically determinate or redundant, are entered into
the equations as internal forces, i.e., as reaction complements. Since this is a
relatively new concept in structural analysis,278 the reaction complements are
illustrated in Fig. 8.7 for a pinned joint attached to a rigid foundation.

The equilibrium equations can be combined into a single matrix equation

nFF + nRR = P (8.36)
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1*1c. 8.7 Reaction complements.

Element forces

where nF and nn are rectangular matrices whose coefficients are the direction
cosines used in resolving the element forces F and reaction complements R,
and P is a column matrix of external forces applied in the directions of the
joint degrees of freedom. Equation (8.36) may be written alternatively as

uP=p (8.37)

where R` =
CF

(8.38)
R

and n = [nF nR] (8.39)

If the structure is statically determinate, the element forces F and reaction
complements R can be found directly from Eq. (8.37). For this special case

F = n-1p (8.40)

For statically indeterminate structures the matrix 1i is singular with the number
of columns greater than the number of rows, and the equations of equilibrium
are not sufficient to determine the forces F. The required additional equations
are supplied by the compatibility conditions, but the detailed discussion of
these equations will be deferred in order to demonstrate first the formulation
of Eq. (8.36) from the equilibrium equations used in the displacement method
(Chap. 6).

Mathematically the so-called statical indeterminacy of an idealized structure
may be defined in terms of the rank of the matrix n in Eq. (8.37). This is
illustrated in Table 8.1 for the various possible cases arising when the matrix
n is formulated.

From Table 8.1 it follows that the statical indeterminacy (or degree of
redundancy) of a structure is n - m, with the restriction that the rank of the
matrix n is equal to m. If this condition is not satisfied, we must look for
errors either in assembling the structural members or in the location of assigned
reactions. In general, if m > n the structure is a mechanism; however, if
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TABLE 8.1 STATICAL INDETERMINACY

Case Order m x n of matrix n Rank r of matrix ii Type of structure

1 m = n r = m

2 m < n r = m

3 m < n r < m

4 m > n r < n

external loads are applied only in certain directions, it is permissible to delete
certain rows from the equation of equilibrium (8.37) to make n: S n in n.
Examples of all these cases will be given in Sec. 8.4.

We now turn to the formulation of the matrix ii. To obtain this matrix we
consider first the relationship between the element forces in the displacement
and force methods expressed by

Sm = B({)Fti) (8.41)

In this equation both sets of element forces S(t) and Ft`) are based on a local
coordinate system; however, in order to form the equations of equilibrium we
must use the element forces 9(1) (see Chap. 6) given by

Statically determinate
structure

Statically indeterminate
structure (redundant
structure)

Either some parts of the
structure form a
mechanism, or rigid-
body degrees of
freedom are not con-
strained properly by
reactions

202

s(i) _ (A(i))TS(=) (8.42)

Hence, using Eqs. (8.41) and (8.42), we have

sm = $(')P) (8.43)

where B(i) _ (X(i))TB(i) (8.44)

Equation (8.44) can be written collectively for all structural elements as

S = $F

where g = (p) S(2) ... s(i) ...}
R = [gu)

F = {F(')

fl(z) ... R(n ... ]
F(2) ... F(i) ...}

(8.45)

(8.46)

(8.47)

(8.48)
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Using the results of Chap. 6, we can write the equations of equilibrium as

A1'S + n1,R = P (8.49)

where the term nnR is included to account for the reaction complements R
resolved in the directions of the externally applied loads P. It should be noted
that the forces R represent both the statically determinate and redundant
reactions. Substituting Eq. (8.45) into (8.49), we obtain

n.FF + nRR = P (8.36)

where nF = AT'B (8.50)

The element forces F will now be partitioned symbolically into statically
determinate forces F° and redundant forces F1, that is,

F =
F
° (8.51)

F1

Similarly, the reaction complements R will be represented by

R =
[°]

(8.52)
R

where Ro and R1 represent statically determinate and redundant reaction
complements, respectively. Using Eqs. (8.36), (8.51), and (8.52), we obtain

0

rF
[ n1 nz ns n4] 1 = P (8.53)

0

LR1J

where [n1 nz] = np (8.54)

and [n3 n4] = nn (8.55)

Collecting the statically determinate and redundant forces into separate matrices,
so that

Po - LRol

, F1
V

R
=X

1

(8.56)

(8.57)
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we can transform the equilibrium equation (8.53) into

0

[no nx] X] = P (8.58)

where no = [n1 n31 (8.59)

and nx = [n2 nq] (8.60)

It should be noted that the rectangular matrix [no nx] is obtained from 6 by
interchanging columns in order to follow the sequence of forces in {Po X}.

Solving now Eq. (8.58) for Po, we have

Fo = [no 1 -no lnx]Lx] (8.61)

The element forces F and reaction complements R can also be written as

g` =X
[F0]

(8.62)

From (8.61) and (8.62) it follows immediately that

CoJ Cn1

-n
1nxP

X 0 1JCX]
(8.63)

It was demonstrated in the previous section that the forces P may be
expressed as

I = boP + bxX

Comparing Eqs. (8.63) and (8.64), we have that

bo =
ro7l]

0

bx - r -no lnxl

(8.64)

(8.65)

(8.66)

The preceding analysis has therefore demonstrated that the bo and bx
matrices can be generated from the equilibrium equations. The actual gener-
ation of no and nx submatrices from n and the matrices bo and bx is accomplished
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directly by the jordanian elimination technique applied to Eq. (8.37). In this
method, an augmented matrix [no nx 11] is formed, and the matrix is then
premultiplied by T,, . . . , T. transformation matrices such that

T. ... T2T1[no nx I) = [I no 1n.r no-'] (8.67)

For practical application, it is usually preferable to form the augmented matrix
as [no nx i P] and to obtain

T.,n ... T2T1[n0 nx P] = [I no 1nx no 1P] (8.68)

This method has the advantage that the augmented matrix is of smaller size and
also that it generates the matrix product no 1P required in

b0P =
no

01P]
(8.69)

The forces X selected by the jordanian elimination indicate automatically
where the fictitious cuts are used on the structure. Thus, it is possible with this
method to avoid the tedious task of the manual selection of redundancies, which
has been customary in the past. This new technique was developed first by
Denke and his associates .711.78-110 Applications of the method will be illustrated
in Secs. 8.4 and 8.5.

Once the matrices b0 and bx are known, the redundant forces X can be
determined from the compatibility equations (8.29a)

bxTV = 0 (8.70)

where v = rP + T

_rf 0]
0fI{

VT =

(8.71)

(8.72)

(8.73)

The matrix f also includes the flexibility f of the reaction supports. In most
practical applications, however, the supports are nonyielding (rigid), and hence
f1 = 0. Similarly, the thermal (or initial) deformation matrix vT includes
thermal deformations of the supports represented by the submatrix vTR.

Substituting Eqs. (8.64) and (8.71) into (8.70), we have

bxnr(b0P + bxX) + bx7'VT = 0 (8.74)
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Hence X = -(bxTfby)-1(b1TfboP + bvTiT) (8.75)

The redundant forces X can then be substituted into Eq. (8.64) to determine the
element forces F and reaction complements R.

8.4 MATRIX FORCE ANALYSIS OF A PIN-JOINTED TRUSS

STATICALLY INDETERMINATE
STRUCTURE; REDUNDANT REACTIONS

As a first example of the force method we shall analyze the two-dimensional
truss shown in Fig. 8.8. The truss is loaded by a vertical force P = 1,000 lb at
node 1. The supports are nonyielding, and all members are kept at the original
temperature at which the structure was assembled with the exception of member
3, which is at a temperature T° higher than other members. This example is the
same we analyzed previously in Chap. 6 using the matrix displacement method.
The relevant geometric data can be found in Table 6.1. As before, Young's
modulus will be taken as 10 x 106 lb/in.2

The first step in the force method of analysis is the formulation of the equations
of equilibrium in terms of the element forces F"1. As explained in Sec. 8.3,
this may be accomplished using transformation matrices W O 1 and B1'1. For bar
elements these matrices are given by

Cl,,, mpg 0 0

1

X1'1 =
0 0 Iq, mpq

and B1'1 =
1

To form the matrix np in the equilibrium equations we also require A1'1, matrices

P=1,000lb

no. 8.8 Pin jointed truss with redundant reac-
tions; element and node numbering.
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which are calculated from

g(i) = (7))TB(i)

The transformation matrices X(i) have already been determined for this structure
in Sec. 6.9. Hence

5 1 0 5 --1-
6 0 0 1 6 0x(11 = (X(1))TB(1) =

0 1 1 1 1

2 0 0 2 0-

7 'C 0 7 -c
8 C 0 1 8 -c

rj(2) _ (X(2))TB(2) =
0 C 1 I C

2 0 c 2 c

0 0 1 0

FB(3) = (X(3))TB(3) = 2 -1 0 1 2 1

3 0 0 1 3 0

4

5

0 -1

c 0

4

5

--I
--c-

fl(4) _ (X(4))TB(4) =
6

3

-C 0

0 C [7
6

3

c

c

4 0 -C 4 -c

7 1 0 7 -1

(6> _ (a(5))7'g(b)
_ 8 0 0 1-1l = 8 0

3 0 1 1 3 1

4 0 0 4 0-

5 0 0 5 0

6 -1 0 1 6 1

Bta) _
7 0 0 1] 7 0

8 0 -1 8 -1
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where the row numbers in (a10)i' and $I'I indicate the directions of displace-
ments (degrees of freedom) specified in Fig. 8.9. Also, as before, c = 1/212.

The row numbers in f(') matrices identify row numbers in the matrix nF.
Hence, there is no need to proceed with the formal derivation using nF =
ATE, and we can set up the equilibrium equations directly as shown below.

1 1 c 0 0 0 0- 0 0 0 0 P1

2 0 c 1 0 0 0 Fl 0 0 0 0 P,

3 o 0 0 c 1 0 F2 0 0 0 0 R1 P3

4 0 0 -1 -c 0 0 F3 0 0 0 0 RQ P4
.+.

5 -1 0 0 -c 0 0 F4 0 0 1 0 R3 P,

6 0 0 0 c 0 1 F5 0 0 0 1
R

Pe

7 o -c 0 0-1 o LFBJ 1 0 0 0 P,

8 0 -c 0 0 0 -1 0 1 0 0 PS

The location and directions of the reaction complements R1, ... , R4 are
indicated in Fig. 8.9.

Next, we form the augmented matrix [n P]; however, for ease of presentation
we shall take PZ = 1 lb and introduce the factor 103 only in the final solution.
Thus, the augmented matrix becomes

1 2 3 4 5 6 7 8 9 10 11

1 I c 0 0 0 0 0 0 0 0 0

2 0 c 1 0 0 0 0 0 0 0 1

3 0 0 0 C 1 0 0 0 0 0 0

4 0 0 -1 -c 0 0 0 0 0 0 0

5 -1 0 0 -c 0 0 0 0 1 0

6 0 0 0 C 0 1 0 0 0 1 f 0

7 0 -C 0 0 -1 0 1 0 0 0 0

8 0 -c 0 0 0 -1 0 1 0 0 0

It should be noted that the column sequence in the above matrix can be changed
provided the identifying column numbers are retained in the process. The
transformation matrix T, in the jordanian elimination technique (see Appendix
A) for the first row can be applied to either column 1 or 2. Noting, however,
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FIG. 8.9 Numbering for elements, degrees of
freedom, and reaction complements.

that the column selected will correspond to the statically determinate force
(either F0 or R0) in the ii matrix, the general rule may be established that it is
preferable to select the element force which is the most significant in resisting the
external force in the direction which the particular row represents. The practical
rule, therefore, is to select from the columns corresponding to the element forces
F a column with the numerically largest coefficient in a given row; however, if all
coefficients are equal to zero the selection is carried out from the columns cor-
responding to the reaction-force complements R. It is clear that for row 1,
the largest coefficient is in column 1. Hence, applying the transformation Tl
to the augmented matrix, we have
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We note now that the largest coefficient in row 2 occurs in column 3. There-
fore, interchanging columns 2 and 3 we can proceed with the premultiplication



by the matrix T2. We observe that the column interchanges are not extended
past column 10, that is, into the loading matrix P, and the subsequent three
multiplications in the jordanian elimination technique are as follows:

O -- O- O O o 0
20 0 0 0 0 - 0 0

a O O O O - O O O

ao 0 O O O O O O -

O O O O O O - O

b 0 O 0 0 O 0

h O 0 0 O O O
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I
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0 0 0 0 0 0 0I
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0 - 0 0 0 0 0 0

20 0 0 0 0 -- O 0
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'o 0 0 0 0 0- o
O O- O O o 0
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Interchanging columns 2 and 9, we note that the next transformation matrix
T6 = I, and consequently we may proceed directly to T6. Hence

I

-0 -I4

2 0 0 0 0 0 - 0 -
N 4 4 0 4 O O

O O O O O O O -
O O O O O O - O

b 0 O O O O - O O
a` O O O O - O O O
a o 0 0 - o o O o

O 0 -- 0 0 0 0 0
M O - O O O O O O

i O O O O O O OI

II

-u
I

so 0 0 0 0- 0 0
N 4 4 4 O 4 O 4

00 0 0 0 O 0 0 0 .
N O O O O O O - O
10 0 0 0 0 0 - O
a 0 0 0 0 - 0 0 0
a 0 0 0 - 0 0 0 0
0 0- 0 0 0 0 0
0- 0 0 0 0 0 0

r 0 0 0 0 0 0 0l

0 0 .:
................ --------------------- -----------
0 0 0 0 o f 0-

- :0 0
I
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This completes the jordanian elimination process, since it is clear that the re-
maining two transformation matrices T7 and T8 are unit matrices. The above
equation was represented symbolically by Eq. (8.68). It should be noted that
the column numbers identify the forces for the submatrices n° and nx, which
initially were combined into one rectangular matrix n. This, therefore, implies
that forces 2 and 10 have been selected to represent redundant forces.

Using, therefore, Eqs. (8.65) and (8.66), we have
2 10

1 ro - I -1 E-c 0 1

2 0
2 1 0

3 I

3 -c 0

-1
4

C
4 1 0

5 -c 0
b0P = 5 I X 103 and bx =

6 -C -1
6 1

7 0 0
7 1

0 -1
8 1

9 0 0
9 -1

10 0 1

10 0

where the matrix product b0P has been evaluated for PZ = 1,000 lb.
The flexibility matrix r and thermal-deformation matrix vT for this example

are given by
1 2 3 4 5 6 7 8 9 10

=[2 4 2 4 2 2 0 0 0 0J x 10-8 in./lb
1 2 3 4 5 6 7 8 9 10

and VT = {0 0 aT/ 0 0 0 0 0 0 0} in. / = 20 in.

In order to set up the compatibility equations (8.74) the following matrix
products are then evaluated:

l
bxT>fbx = 2 J

C4(1 + c2) c
x 10-0

c 1

2+3c2
bxTfb°P = -2 c x 10-3

1

[_ccaTI]
b, TVP =

0
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The unknown redundant forces X are calculated from

X = -(bxTfbs)-'(bxTfb0P + bxTVT)

106 1

-C

2 -+- 3c2

-2
2(4 + 3c2) 1-c 4(1 + c2)

x 10-3 +

c2)

10

83c2) [
c2]aTl

(4+3C2)
c x 103 +

2(4 +
c2

V2

5

11

x 103 +
22

22

aT1 x 106

The forces in the structure and the reaction complements are then determined
from

P = b0P + bxX

1

it 0 7
2

3

4

5

6

7

8

9

1

I

1

1

101 0

2

3

4

x 103 + 5

6

0

7 0 0

8 0 -1

9 0 0

10 0 1

1 0

1 0 121

x 103 + I aT1 x 108

22
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I I

2

- -
1l

1

61/2

I

2

- 22

V2

3

4

1l

5

11

- 5V2

3

4

22

1

22

V2
II 22

5
5 X 103 + 5 aTl x 1081b

11 22

61 0 6 0

7 1 7 0

6 1

8 8

II 22

9 -1 9 0

5
10 10
L 11 L 22J

where the last two column matrices represent the element forces and reaction
complements due to external load P2 = 1,000 lb and the temperature respec-

tively.
To find deflection in the direction of P2 we may use the unit-load theorem.

Hence, denoting this deflection by r2i we have

r2 = bo"'(TF + VT)

= ; $ X 10-3 + i y T I = 4 i X 10-3 + W a.T in.

which agrees with the previous results obtained by the displacement method.
We shall consider next the application of the jordanian technique to other

cases. Special consideration will be given to errors made in either the structural

assembly or in the selection of support reactions to resist externally applied

loads.

STATICALLY DETERMINATE REACTIONS

For this example, consider the structure just analyzed but supported only by
three reactions, as shown in Fig. 8.10. We retain the same numbering scheme
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(6)1 1(3)

\(4)

MW

FIG. 8.10 Redundant pin-jointed truss with statically
determinate reactions.

for the forces, and the augmented matrix is reduced to

1

2

3

1

1

0

0

3

0

1

0

5

0

0

1

4

0

0

0

9

0

0

0

6

0

0

0

7

0

0

0

8

0

0

0

2

c

c

c

11

0

1

I

-1
0 0 0 1 0 0 0 0 -14

c

5 0 0 0 0 1 0 0 0 0 -1
6 0 0 0 0 0 1 0 0 c 1

7 0 0 0 0 0 0 1 0 0 1

8 0 0 0 0 0 0 0 1 0 1

Using the above matrix, we obtain (for P2 = 1)

b0P =

1 0
1 I -c

2 0
21 1

3
3 -c

-1
4

C
4 I

5 1

-C

6 -C
6 1

7 0
7

0

9 0
9 -1
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Naturally, forces 7, 8, and 9 could have been obtained separately from the
equations of overall equilibrium; however, from the computational point of
view, it is preferable to follow the general method, since there is then no need to
differentiate between statically determinate and indeterminate reactions.

INSUFFICIENT REACTIONS

As an example, consider the structure in Fig. 8.11, where we shall assume that
the analyst inadvertently provided an insufficient number of reactions. The
numbering scheme is the same as in the previous examples. Forces 9 and 10
(reaction complements) will be deleted. The jordanian elimination can be
carried out up to and including premultiplication by T4, which leads to

1 3 5 4 2 6 7 8 11

I 0 0 0 c 0 0 0 0

2 0 1 0 0 c 0 0 0 1

3 0 0 1 0 c 0 0 0 1

-1
4 0 0 0 1 -1 0 0 0

C

5 0 0 0 0 0 0 0 0 -1

6 0 0 0 0 C 1 0 0

7 0 0 0 0 0 0 1 0 1

8 0 0 0 0 -c -1 0 1 0J

Since the fifth row of the submatrix n after four eliminations consists of zeros,
the matrix Ts cannot be constructed, and the jordanian elimination cannot be
continued past this stage. The row of zeros indicates that proper reactions
were not provided for the degree of freedom 5.

no. 8.11 Pin jointed truss with insufficient reactions.
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(6)
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(1) 1P

(5)

(3)

0

FIG. 8.12 Pin jointed truss reduced to a mechanism.

STRUCTURE REDUCED TO A MECHANISM

Omission of the two diagonal members in the two-dimensional truss analyzed
at the beginning of this section reduces the structure to a mechanism (see Fig.
8.12). Therefore, by deleting 2 and 4 it can be seen from the first example that
the jordanian elimination can be carried out up to and including premultipli-
cation by T3, which leads to

1 3 5 6 7 8 9 10 11

1 1 0 0 0 0 0 0 0; 0,
2 0 1 0 0 0 0 0 0 1

3 0 0 1 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 1 0 0

6 0 0 0 1 0 0 0 1 E 0

7 0 0 0 0 1 0 0 0 i 0

8 0 0 0 -1 0 1 0 0 0

At this stage the elimination process can no longer be continued, since the
fourth row of the submatrix it after three eliminations consists of zeros only.
The degree of freedom 4 therefore requires either an additional structural
member or an external reaction.

8.5 MATRIX FORCE ANALYSIS OF A CANTILEVER BEAM

As a second example of the force method we shall analyze a cantilever beam
built-in at one end and simply supported at the other end (see Fig. 8.13). The
same problem was analyzed by the displacement method in Sec. 6.10. As
before, the beam length is 2/, and the applied loading consists of forces P3, P4,
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FIG. 8.13 Propped cantilever beam; numbering system for
elements, degrees of freedom, and reaction complements.

and Pa. In addition to the external loads the beam is subjected to a temperature
distribution varying across the beam section but constant along the length of the
beam. The reaction complements are denoted by RI, R2, and Ra.

For the purpose of the analysis the beam is subdivided into two elements, and
the selected element forces are shown in Fig. 8.13. It should be noted, however,
that for beam elements other choices for the element forces are also possible, as
explained in Sec. 7.2. For convenience in the subsequent analysis we introduce
the following notation

rFi

F2

Fa

F4

F1111

F2(1)

F1(2)

F2(2)

in order to avoid repeated use of the superscripts with the element forces F.
The transformation matrices B(') for the two elements are simply [see Eq.

(7.23)]

1 2 3 4

I 1 0 3 -1 0

2 -1-1 4 -1-1
B(1) B(2)

3 1 0 5 1 0

4 0 1] 6 0 1J
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where the row numbers refer to the degrees of freedom (displacements) and the
column numbers refer to the element forces.

Noting that the local and datum systems coincide in this example, we may
proceed directly to set up equations of equilibrium using the Bc" matrices.
Hence it can be easily demonstrated that Eq. (8.36) becomes

1 2 3 4 1 2 3

1 F-1 0 0 07 I Ft 0 01 rF1T

2 -1-1 0 0 F, 2 0 1 0
R

1

1 P2

3 1 0 -1 0 F2 3 0 0 0 P3+
R2 I =

4 0 1 -1 -1 1 1F3 4 0 0 0 P4
R3

5 0 0 1 0 F4 5 0 0 1 P5

6 0 0 0 1 6 LO 0 0 PBJ

Having obtained the equations of equilibrium, we may proceed with the
Jordanian elimination technique. The sequence of transformation operations
on the augmented matrix from the equilibrium equations is
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In the preceding equations the column numbers 1 to 4 refer to the element
forces, 5 to 7 refer to the reaction complements, and 8 to 10 refer to the external
forces. It follows therefore from the last equation that the reaction complement
R3 (column 7) has been selected to be the redundant force. Hence, using Eqs.
(8.65) and (8.66), we have

I 1 0 0 I -1-
2 0 1 1 2 -1

3 0 0 0 P3 3 -1

b0P = 4 0 0 1

P.

bx=4 0

5 1 0 0 PB 5 -1

6 1 1 1 6 - 21

7 _0 0 01 7 1_II
By neglecting the effects of shear deformations the element flexibility matrices
are given by [see Eq. (7.21)]

1 2

1 212 3 1fa) _
2 31 6 6EI

3 4

3 212 31 /
f(2) _ _

4 31 6 6EI

while the corresponding relative thermal deformations are calculated from
[see Eq. (7.22)]

_/
od

VIP) = 2[-2]21Ty dA

3-1 0,
vr(2) = 4[-2]2IJ,iTydA

The flexibility matrix ]` from (8.72) and thermal-deformation matrix VT from
(8.73) are determined from

0 0

0

f(2) 0

0 0

V7'(1)

and VT - VT W

0
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It can now be easily demonstrated that

8 3

bx"' bx
3 E!

/2

_ - [51 9 12]
6EI

P
2x12('TydA

I d

X = -(bx"'fbx)-'(bxTfb0P + bxTV2,)

[,a r
= [51 9 12]

161
4

4
Ea

J
Ty dA

T-bx VT

Hence

Having obtained the redundant force X, we can calculate the element forces and
reaction complements from

P=b0P+bxX
so that

210

1

1

1

I 21-1
3 0 0 0 P3 3 -1 P3

P=4 0 0 I PQ +4 0 [5/ 9 12]161P°
4 1 fATydA

5 1 0 0

I

PR 5- l PB

6 1 1 1 6 -2/
7 0 0 0 7 l

I 1I1 -9 -12 t -1
2 -512 71 4/ 2 -1
3 -51 -9 -12 P3 3 -1

rr

= 4 0 0 161
161

P,, - 4 0
4

Ec L Ty /A

5 11/ -9 -12 LPa 5 -1
6 612 -2/ -8/ 6 -2/
7 5/ 9 12 7 1
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To find the displacements in the direction of the applied forces we use the
unit-load theorem, which is expressed as

r = b0TV = b0TFP + boTVT

Using the previously derived matrices bo, r, F, and VT, we have that

3 4 6

r3 3 7P 31 -121 r3j 3 1

r = !4 4 31 15 -12 96E/ ' + 4 1 81 Ty dA

6 -121 -12 48 6 6 -4
which agrees with the results obtained in Sec. 6.10 by the matrix displacement
method of analysis.

8.6 COMPARISON OF THE FORCE AND DISPLACEMENT METHODS

Having developed the two alternative methods of structural analysis, we are
faced with the natural question as to which method is best for practical appli-
cations. To answer this question we must consider a number of different
factors.

First it should be emphasized that since the same element properties can be used
for either the displacement or force methods, it is obvious that, theoretically,
both methods lead to identical results, as was demonstrated in the illustrative
examples in Chaps. 6 and 8. The computational path leading to the calcu-
lation of stresses and displacements is different in each method. This means
that because of the different rounding-off errors and possible ill-conditioning of
equations, the actual numerical results may differ slightly. For some special
applications numerical solutions are obtained using both methods with different
assumptions on the element stress or displacement distributions, i.e., compatible
but nonequilibrium stress states for the displacement method and statically
equivalent (equilibrium) but noncompatible stress states for the force method.
This leads to the so called bracketing of the solution. Such solutions are
particularly useful if the bracketing is small, since they provide meaningful
information on the accuracy of the results.

Let us examine next the matrix operations involved in the two methods.
The displacement method is based on the solution of a simple equation

P=KU+Q (8.76)

relating the external forces P and thermal forces Q to the displacements U at
the node points of the idealized structure. We have seen in Chap. 6 how the
element stiffness matrices are assembled into the stiffness matrix K for the
assembled structure. The procedure is indeed very simple and does not require
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any complicated programming. Once the displacements U have been calcu-
lated, they are used to calculate stresses in individual elements. Some difficulties
may occur due to ill-conditioning of Eq. (8.76) when inverting the stiffness
matrix K. Some of the conditioning problems have been discussed by Taig and
Kerr;318 however, constant improvements in computer technology result in
increasing accuracy, such as double-precision inversion programs, and tend to
eliminate ill-conditioning as a source of error.

In modern computer programs for the matrix methods, human errors in the
basic input data are probably the most frequent source of errors. These are the
most difficult ones to detect automatically. As a speculation for future develop-
ments we can mention the possibility of using visual displays of structural
geometry from the input data. Special attention must be paid also to the
design of input data sheets in order to reduce chances of erroneous entries and
errors in subsequent keypunching of the input cards. One noteworthy in-
novation in this respect is the method introduced by Argyris,16 whereby inter-
mediate node points are generated automatically by the computer. This means
that some of the idealization is performed by the computer, and therefore the
amount of input data required from the analyst is greatly reduced.

In the force method of analysis the sequence of matrix operations required to
obtain stresses and displacements is considerably more complicated than for the
displacement method. A schematic flow diagram for the force analysis is
presented in Fig. 8.14. This may be compared with the corresponding flow
diagram for the displacement method in Fig. 6.2. We have demonstrated in this
chapter that the self-equilibrating force systems can be generated automatically
from the equations of equilibrium using the jordanian elimination technique.
This technique allows us to use the same input information for the force method
as for the displacement method. When the matrix force methods were first
introduced, considerable difficulty was experienced in formulating the self-
equilibrating force systems. The determination of the degree of redundancy and
the distribution of the self-equilibrating force system was sometimes an intract-
able proposition for exceedingly complex structural systems. Special programs
had to be written for specific structures, 29,160.267 force systems were orthogonalized
to improve conditioning,29 regularization procedures were used for cutouts,"
and so on. The development of the automatic selection of redundancies and
generation of the self-equilibrating force systems completely changed the
approach to the force method of analysis. Any arbitrary structural system, no
matter how complex, can now be analyzed by the force method. Furthermore,
the selection procedures based on the jordanian elimination technique lead in-
variably to well-conditioned equations.78

Since the input information is identical in the two methods, it would appear
at first that the choice of one or the other is largely a matter of taste and the
availability of a suitable computer program. There is, however, one important
consideration that has not been discussed, the number of unknown displacements
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FIG. 8.14 Flow diagram for the matrix force method.

or forces and the number of structural elements. Computer programs for the
displacement method have built-in limitations on the number of displacements
and elements, while those for the force method have limitations on the number
of node points, redundancies, and elements. Since the number of unknowns in
the two methods may be widely different for the same structure, this alone may be
the deciding criterion for selecting the method of analysis.
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Mainly because of the simplicity of matrix operations there has been a
tendency to use the displacement method for complex structural configurations.
For some special structures, however, particularly if the selection of redun-
dancies and generations of the self-equilibrating systems can be preprogrammed,
the matrix force method can be used very effectively and should be simpler than
the displacement method.

PROBLEMS

8.1 a. A redundant structure is supported in a statically determinate manner and is
subjected to a set of specified displacements r. Using the matrix force method of analysis,
show that the element forces F are given by

F = (b0 - bx(bxTfbx)-'bx''fb0)(b0Tf(b0 - bx(bxrfbx)-1bxTfbo))-'r

where b0 = matrix of element forces due to unit external forces applied in directions of r in
"cut" structure

bx = matrix of element forces due to unit redundancies in "cut" structure
f = flexibility matrix of unassembled elements

b. Explain how the equation for the element forces F would be modified if the structure
were statically determinate.

8.2 The element forces in a pin-jointed truss, shown in Fig. 8.15, have been determined for
a single external load of 1,000 lb applied vertically down at the node 1. These forces are given
by the matrix

1 2 3 4 5 6 7 8 9 10 11

F = (0.442 0.442 0.789 -0.625 -0.558 0 1.558 0.625 -0.789 -1.442 -0.442) x 103 lb

where the row numbers refer to the element-numbering system. Apply the unit-load theorem
in matrix form to determine both vertical and horizontal deflections of node 4. All cross-
sectional areas are equal to 1.0 in.', and E = 10 x 100 lb/in.2

8.3 Solve the problem in Sec. 8.5 using the flexibility matrix (7.24) and thermal deformation
matrix (7.25).

xx
10 in.

FIG. 8.15
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FIG. 8.16

8.4 Using the matrix force method, calculate deflection and rotation at the center of a
uniform beam (Fig. 8.16) subjected to a transverse force W and moment M. The moment of
inertia of the beam cross section is 1, and Young's modulus is E. Neglect the effects of shear.
deformations.

J
P

FIG. 8.17

8.5 A uniform beam of length 21 is built-in at x = 0, simply supported at x = /,and free at
x = 21 (see Fig. 8.17). The moment of inertia of the beam cross section is 1, and Young's
modulus of the material is E. The beam is subjected to a transverse load P at the free end.
Neglecting the effects of shear deformations, calculate by the force method the beam deflection
at x = 21 and rotations at x = l and x = 21.

1.0 in .2

0.05 ii

1,0 in 2

10 in. FIG. 8.18

8.6 Determine element forces due to load P = 10,000 lb in the "diffusion" problem shown
in Fig. 8.18. The panel thicknesses are 0.050 in., and all edge members are 1.0 in $ Use the
idealization of constant shear flow panels and linearly varying axial load members. The panels
may be assumed to carry no normal stresses. Young's modulus E = 10 x 106 lb/in.2, and the
shear modulus G = 4 x 10" lb/in?

1.0 in.2 15 in.

P

1.0in2 15in.



CHAPTER 9
ANALYSIS OF
SUBSTRUCTURES

In applying matrix methods of analysis to large structures, the number of struc-
tural elements very often exceeds the capacity of available computer programs,
and consequently some form of structural partitioning must be employed.
Structural partitioning corresponds to division of the complete structure into
a number of substructures, the boundaries of which may be specified arbitrarily;
however, for convenience it is preferable to make structural partitioning
correspond to physical partitioning. If the stiffness or flexibility properties of
each substructure are determined, the substructures can be treated as complex
structural elements, and the matrix displacement or force methods of structural
analysis can be formulated for the partitioned structure. Once the displace-
ments or forces on substructure boundaries have been found, each substructure
can then be analyzed separately under known substructure-boundary dis-
placements or forces, depending on whether displacement or force methods of
analysis are used. This chapter presents a general formulation of the dis-
placement and force methods of substructure analysis.

9.1 SUBSTRUCTURE ANALYSIS BY THE
MATRIX DISPLACEMENT METHOD27°

GENERAL THEORY

In the displacement method each substructure is first analyzed separately,
assuming that all common boundaries (joints) with the adjacent substructures
are completely fixed; these boundaries are then relaxed simultaneously, and
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the actual boundary displacements are determined from the equations of
equilibrium of forces at the boundary joints. Naturally, the solution for the
boundary displacements involves a considerably smaller number of unknowns
compared with the solution for the complete structure without partitioning.
Each substructure can then be analyzed separately under known substructure
loading and boundary displacements. This can be done without difficulty
since the matrices involved are of a relatively small size.

The complete set of equilibrium equations for the structure regarded as a
free body may be written in matrix form as

KU= P - Q (9.1)

where K is the stiffness matrix, U represents a column matrix of displacements
corresponding to external forces P, and Q are the corresponding thermal forces
calculated from some specified temperature distribution. For subsequent
analysis it will be convenient to introduce the effective external loading
given by

P = P - Q (9.2)

so that Eq. (9.1) becomes

KU=P (9.1a)

By suppressing a suitably chosen set of displacements to eliminate rigid-body
displacements the matrix K is rendered nonsingular, and then Eq. (9.1a) can
be solved for the unknown displacements U.

In the following analysis the structure is divided into substructures by
introducing interior boundaries. The column matrix of boundary displace-
ments common to two or more substructures is denoted by Ub, and the matrix
of interior displacements (each of which occurs at an interior point of only
one substructure) is U,. If the corresponding effective external forces are
denoted by matrices f'b and Pi, Eq. (9.1a) can be written in partitioned form as

[K,,, K ] [U,] = [Pil
(9.3)

It will now be assumed that the total displacements of the structure can be
calculated from the superposition of two matrices such that

U = Va> + U(P) (9.4)

where U' denotes the column matrix of displacements due to P{ with Ub = 0,
while UP represents the necessary corrections to the displacements UIa) to
allow for boundary displacements Ub with P1 = 0. Thus Eq. (9.4) may also
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be written as

Ub Ubca)
Ub(P)

.(p), (9.4a)U = [U U (a) boundaries + [Uz
t r Owed

where the final term represents the correction due to boundary relaxation,
and where, by definition,

Ub(a) = 0 (9.5)

Similarly, corresponding to the displacements U(a) and U(a) the external forces
P can be separated into

P = P(a) + P(a)

or P = [Pr] = [-c] + [Pr(e)

(9.6)

(9.6a)

where, by definition,

Pi(-) = P, (9.7)

and PI(e) = 0 (9.8)

When the substructure boundaries are fixed, it can readily be shown, using
Eq. (9.3), that

Ur(a) = Kt, 'Pr (9.9)

and Pb(") = KbrKri P; _ Rb (9.10)

It should be noted that Pb(a) represents boundary reactions necessary to maintain
Ub = 0 when the interior forces P, are applied. When the substructure
boundaries are relaxed, the displacements U(P) can be determined also from
Eq. (9.3), so that

Ur(e) = -Krr-'K,bUb(a) (9.11)

Ub(R) = KG 'Pb(Q) (9.12)

where K1, = Kbb - Kb,Krt 1Krb (9.13)

represents the boundary stiffness matrix. The matrix Pb(e) can be determined
from Eqs. (9.6a) and (9.10), and hence

Pb(A) = Pb - Ph(a) = Pb - KbZKrr-1P, = Sb (9.14)

When the boundary displacements are set equal to zero, the substructures
are completely isolated from each other, so that application of an interior force
causes displacements in only one substructure. It is therefore evident that the
interior displacements Ur(a) with boundaries fixed can be calculated for each
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substructure separately, using Eq. (9.9). The boundary displacements Ub(e)
are found from Eq. (9.12) involving inversion of Kb, which is of much smaller
order than the complete stiffness matrix K.

THE SUBSTRUCTURE DISPLACEMENTS
AND FORCES: BOUNDARIES FIXED

The stiffness matrix of the rth substructure, regarded as a free body, can
conveniently be partitioned into

K(') =
CKbb(")

Kbi(")JKib(") Kii(")
(9.15)

where the superscript r denotes the rth substructure and the subscripts b and i
refer to the boundary and interior displacements, respectively. Naturally,
because of symmetry of the stiffness matrix, Kbi(") is a transpose of Kib("). By
use of the above stiffness matrix the substructure displacements U(") can be
related to the external forces f'(") by the equation

K('')U"") = P(") (9.16)

Kbb(') Kbi(") Ub(") Pb(

or IIIr

11

(9.17)
Kil)(") KLUt(")1 - I

When the substructure boundaries on the complete structure are fixed, the
boundary fixing must be sufficient to restrain rigid-body degrees of freedom on
each substructure considered separately. A typical substructure with fixed
boundaries is shown in Fig. 9.1. The substructure interior displacements and

FK;. 9.1 Typical substructure with fixed boundaries.
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boundary reactions due to Pi(r) when U,,01 = 0 can be determined from Eqs.
(9.9) and (9.10), and therefore
[U,(r)]

boundaries fixed = (Kii(r))-1
f'ii(r) (9.18)

and tb(r) = Kbi(r)(Ktt(r))_1P4(r) (9.19)

where the matrix inversion of K,i(r) is permissible because the boundary fixing
restrains all rigid-body degrees of freedom.

Before considering "matching" of displacements on common boundaries, it
is necessary to evaluate the substructure stiffnesses associated with the dis-
placements Ub(r). To determine these stiffnesses Eq. (9.13) is applied to the
rth substructure, and it follows immediately that
Kb(r) = Kbb(r) - Kb$(r)(Kts(r))-1KIb(r)

(9.20)

which will be used subsequently to assemble the boundary-stiffness matrix Kb
for the complete structure.

Some substructures may be analyzed more conveniently by the matrix force
method. For these cases the boundary reactions Rb(r) due to Pj(r) for fixed
boundaries can be obtained from the general analysis, while the boundary
stiffness Kb(r) can be determined from the analysis described below.

To evaluate the stiffness matrix Kb(r) using the force method of analysis six
zero displacements w(r) are selected on the substructure boundary to restrain
rigid-body degrees of freedom, and then unit loads are applied in the directions
of the remaining n - 6 boundary displacements U(r), where n is the total number
of displacements on the boundary. The solution for displacements gives then
the flexibility matrix relative to the fixed datum based on the selected
six zero displacements which will be used to determine the stiffness matrix
KbM

The boundary forces and displacements are related by the equation

Kb(r)Ub(r) = Sb(r) (9.21)

or, in the partitioned form, by the equation
Kuu(r) Kum(r)l ur(r)l

CK,on(r) K,,,(")] [w(r)J -
[S.(r)-l

S.(r)J

where ur represents the n - 6 displacements, w(r) represents the six
displacements, and S.(r) are the corresponding applied forces, and

K,,,,(r) = (Fnn(r))_1

(9.21a)

datum

(9.22)

The column matrix for the boundary displacements Ub(r) can be expressed as

Ub(r) = ur(r)=
Cr(r)J

+CT(r)Jw(r) (9.23)
1 0 1
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where r(r) are the displacements ur(r) measured relative to the fixed datum and
T(r) is a transformation matrix derived in Chap. 6. The derivation of this
transformation matrix requires that at least three of the displacements in w(r)
refer to three translational displacements on the substructure boundary.
Applying now virtual displacements (w(r), it follows from Eq. (9.23) that

6U7(r) = T(r) 6W(r) (9.24)

From the principle of virtual work, it is clear that if the virtual displacements
are only those representing the rigid-body degrees of freedom, the virtual work
is equal to zero. Hence

(Suuy)1' Sar(r) + (Sw(r))T 6W(r) = 0 (9.25)

Substituting Eqs. (9.21), (9.23), and (9.24) into (9.25), and noting that K,,,,,(r) _
(K (r,)1" we find that

(r7'(K,v,, + TTK,ft#"T + K"ej)l aw = 0
(9.26)

where for simplicity the superscripts (r) have been omitted. As Eq. (9.26)
must be valid for any arbitrary values of r and w, we have

K""TT = 0 (9.27)

and TTK,U"T + K,0,0T + T1 K'v,,T = 0 (9.28)

The stiffness submatrices K,v and K,,,,o can now be determined from Eqs.
(9.27) and (9.28), and the result is

K,ou = -T1'K're (9.29)

K,,,, = TTK,,,,T (9.30)

Finally, substitution of Eqs. (9.29) and (9.30) into Eq. (9.21a) leads to

Kuu(r) -Kun rT(r)
( )Kb (r) = --- ---------------------------------- 9.31

[-(T(r))TKuu(r) (T(r))TKuu(r)T(r)

which represents the required boundary stiffness matrix.

GENERAL SOLUTION FOR BOUNDARY
DISPLACEMENTS: SUBSTRUCTURE RELAXATION

Having determined the boundary stiffnesses Kb(r) and the reactions ftb(r) due to

specified interior loading, we then relax all boundaries simultaneously with the
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Substructure, (r+1) Substructure, (r)

P(r,r+1)
b

FIG. 9.2 Joint loads before boundary

relaxation.

TI r
+11 R (r)

b b

exception of a number of selected displacements serving to form a reference
datum for the complete structure. When the boundaries are relaxed, the
boundary reactions and any external forces applied on the boundaries will not
be in balance, and therefore the boundary relaxation will induce boundary
displacements of such magnitude as to satisfy equilibrium at each joint on the
boundary. To calculate these boundary displacements the complete struc-
ture can be regarded as an assembly of substructures subjected to external
loading

Sb = _ f G(r) + P, (9.32)
r

where the summation implies here addition of the corresponding boundary
reactions for boundaries fixed, while 1P,, is the loading matrix for external forces
applied on the boundaries; the negative sign with Rb(r) is used to change the
boundary reactions into externally applied forces, as indicated by Eq. (9.14).
In Fig. 9.2 a typical joint on the common boundary between substructures (r)
and (r + 1) is shown. Here a typical resultant boundary loadSb(r.r+l) is given by

Sb(r,r+l) _ _R,(r) _ Rb(r+1) 4 F,(r,r+1) (9.33)

The equations of equilibrium in terms of boundary displacements for the
complete structure can now be written as

KbUb = 9b (9.34)

where Kb is obtained by placing the submatrices Kb(r) in their correct positions
in the larger framework of the boundary stiffness matrix for the complete
structure and summing all the overlapping terms. Elimination of a sufficient
number of displacements to restrain rigid-body degrees of freedom for the
complete structure ensures that the matrix Kb is nonsingular, and therefore the
boundary displacements Ub can be determined from

Ub = Kb 19b (9.35)
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Before proceeding to the analysis of loads and displacements on separate
substructures, the displacement matrix U6 must be expanded into a eolumn of
substructure displacements Ub(r), in the exact order in which they appear in
Eq. (9.17). This can be obtained by a simple matrix transformation

{Ub(l) Ub(2) ... Ubtr) ...} = AbUb (9.36)

where the matrix Ab is of the same type as the transformation matrix A used in
Chap. 6.

When the substructure stiffness matrices Kb(r) are assembled into the larger
stiffness matrix Kb for the complete structure, their relative positions in this
larger matrix depend on the sequence in which the individual boundary dis-
placements are selected in Eq. (9.34). Since some of the substructures will not
be physically connected, this means that their coupling stiffness matrices will
be equal to zero. As the coupling matrices occur only on substructures which
have common boundaries, it is therefore advantageous, when selecting a
numbering system for substructures and displacements, to ensure that the
component submatrices of Kb will occur around the principal diagonal, forming
a band matrix. This arrangement may result in a considerable saving in the
computing time, if special inversion programs for band matrices (also known as
continuant matrices) are used to determine Kb 1.

FIG. 9.3 Typical substructure arrangement for delta aircraft.
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A typical substructure arrangement for a delta-wing aircraft is shown in
Fig. 9.3; this arrangement results in a quintuple band matrix for Kb

[1,1] [1,2] 0 0 0 0

[2,11 [2,2] [2,3] [2,4] 0 0

0 [3,2] [3,3] [3,4] 0 0
(9.37)

0 [4,2] [4,3] [4,4] [4,5] [4,6]

0 0 0 [5,4] [5,5] [5,6]

0 0 0 [6,4] [6,5] [6,6]

where the row and column numbers denote the substructure boundary numbers.
For an aircraft whose wing has a high aspect ratio, the substructure boundaries
can be selected in such a way as to ensure that each substructure will have
common boundaries with not more than two adjacent substructures. A
typical arrangement for these cases is shown in Fig. 9.4. Here even a greater
economy of computing effort can be achieved since the boundary-stiffness
matrix Kb would result in a triple band matrix

Kb =

[1,1] [1,2] 0 0

[2,1] [2,2] [2,3] 0

0 [3,2] [3,3] [3,4]

0 0 [4,3] [4,4]

(9.38)

rio. 9.4 Typical substructure arrangement for conventional aircraft.
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THE SUBSTRUCTURE DISPLACEMENTS
AND FORCES: BOUNDARIES RELAXED

Having determined the boundary displacements on each substructure from
Eq. (9.36), we can analyze the substructures separately under the external
loading Pt(r) together with known boundary displacements Ub(r). From Eq.
(9.17) it follows that the substructure interior displacements Ut(r) due to the
forces NO and boundary displacements Ub(r) are given by

Ui(r) =
(Ktt(r))-IKib(r)Ub(r) (9.39)

whence

Ub(r) I
. ..................... ........ Ub(r) (9.40)

r) boundaries y (r)1-1K (r)Ut(r) boundariesrelaxed

[El, fixed



ANALYSIS OF SUBSTRUCTURES 241

or

l fixed

rdisplacements due tolCUm
boundariesI = L I oundurlca + Lboundary relaxation J

l
relaxed

_
CU(T) b (9.40a)

A schematic flow diagram for the complete displacement analysis of sub-
structures is shown in Fig. 9.5, where for simplicity only the main steps in the
computation have been indicated. The diagram illustrates how the individual
substructure analyses are assembled together to form boundary stiffness and
boundary force matrices for the complete structure followed by the calculation
of substructure boundary displacements, which are subsequently used to
determine displacements and forces in each substructure independently.

9.2 SUBSTRUCTURE DISPLACEMENT
ANALYSIS OF A TWO-BAY TRUSS

As an illustrative example of the substructure displacement analysis a simple
two-bay pin jointed truss (Fig. 9.6) will be analyzed. This cantilever truss is
attached at one end to a rigid wall and is loaded by external forces Pl, P2, and
P. at the free end. The truss will be partitioned into two substructures by
disconnecting the outer bay from the remainder of the structure. An exploded
view of the two selected substructures is shown in Fig. 9.7. Naturally, other
choices for partitioning are possible also. For example, the center vertical
member can be sliced vertically into two halves to form two substructures.

The first step in the substructure displacement analysis is the determination
of substructure stiffness matrices, which are obtained by combining the element
stiffness matrices in the datum system into stiffness matrices for assembled
substructures using the summation procedure described in Chap. 6. Since the

20 in.

P3

no. 9.6 Truss geometry and loading. Cross-sectional areas:
vertical and horizontal bars 1.0 in.; diagonal bars 0.707 in.'
(V2/2 in.'); E = 10 x 100 lb/in.'
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10 R

IMMMI

Substructure 2

FIG. 9.7 Substructure partitioning.

Substructure I

present example uses the same bar elements as the example of Sec. 6.9, we can
use previously derived element stiffnesses. Hence compiling the substructure
stiffnesses, we obtain

1

2

F 5

1 5

3 0 0 5
Symmetric

4 0 -4 -1 5K1 = 0.125 x 108
5 -4 0 -1 1 5

6 0 0 1 -1 -1 1

7 -1 -1 -4 0 0 0 5

0 -1 -1 0 0 0 0 1 1

1 2 3 4 5 6 7 8

5 5

6 1 5

7 0 0 5
Symmetric

8 0 -4 -1 5K(2 - 0.125 x 1089 -4 0 -1 1 5

10 0 0 1 -1 -1 5

11 -1 -1 -4 0 0 0 5

12 -1 -1 0 0 0 -4 1 5

5 6 7 8 9 10 11 12
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where the row and column numbers refer to the degrees of freedom designated
in Fig. 9.7. As before, the units used are pounds and inches.

To calculate boundary stiffness matrices we use Eq. (9.20). Thus for the
first substructure we have
K) tU = Kbb(l) - Kbi(l)(Kii(1))-1Kib(1)

5 6 7 8 1 2 3 4

5 5 -1 0 0 1 5 (--4 0 -1 11

6 -1 1 0 0 106 6 0 0 1 -1 108

7 0 0 5 1 8 7 -1 -1 -4 0 8

8 0 0 1 1 . 8 1 -1 -1 0 0

1 2 3 4 5 6 7 8

1

5 l 0 0 -1 1 -4 0 -1 -11
2 1 5 0 - 4 10, 2 0 0 -1 -1 106x
3 0 0 5 - 1 8 3 -1 1 -4 0 8

41 0 -4 -1 5 4 1 -1 0 0
5 6 7 8

5 0 0 0 01

6 0 1 0 - 1 108

7 0 0 0 0 22

8 0 -1 0 1

Displacements 1 to 4 represent the interior displacements on substructure 1;
however, there are no interior displacements on substructure 2, hence
Kb(a) = K(2)

Combining Kb(1) and Kb(2) matrices to form the boundary stiffness matrix for
the entire structure and at the same time eliminating rows and columns 9 to
12, we obtain

5 6 7 8

5 55 11 0 0

6 11 59 0 -48 106
Kb = 7 0 0 55 -11 88

8 L 0 -48 -11 59

To determine the resultant boundary forces Sb we use*
Sb=Pb - Rb

= Pb - Kbi(1)(Kiit1))-1Pj(1)

* Bars over Sb, P&,, etc., are not used here because of the absence of thermal loading in
this example.
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Noting now that there are no external forces on the substructure boundaries
we have that

P,,=0
Hence

1 2 3 4 1 2 3 4

5--4 0 -1 1 1-5 1 0 0 -1 1 p1()
6 0 0 1 -1 106 2 1 5 0 -4 108 2 p2u)

Sb 7 -1 -1 -4 0 8 13 0 0 5 -1 I8 3 p3(1)

a -1 -1 0 0 40 -4 -1 5 40
5 11 -11 0 -11 Pl(1) 5 11 -11 0 pl(l)
6 -1 5 -1 6 1

Pp(1) 6 -1 5 -1 1
pQ(l)

7 0 11 11 11 11 p8u) 7 0 11 11 ll
p3(1)

8 1 6 1 5 0 8 1 6 1

The boundary displacements Ub are determined from

Ub = (Kb)-'S1,
5 6 7 8

5-55 11 0 0 -1 5 11 -11 0 P1(1)

6 11 59 0 -48 106 6 -1 5 -1 1 p2(l)
7 0 0 55 -11 88 7 0 11 11 11

8 0 -48 -11 59 8 1 6 1

p3a)

5 6 7 8

5r 119 -71 -12 -601 Sr 11 -11 01

6 -71 355 30 0 2x1
6

6 -1 5 -1
11971

1 3

7 0 11 11 117 -12 l
(l)

8 60 300 71 355 1 6L- 8 L 1j
5 120 -196 -11-
6 - 76 456 55 2 x 10-6
7 -11 197 120 131

8 --55 461 76

5 r 1.832 -2.992 -0.1681

6 -1.160 6.962 0.840

7 -0.168 3.008 1.832

8 -0.840 7.038 1.160
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while the interior displacements are calculated from

Ui(1) = (Kis(i))-3Pi(1) - (Kii(I))-'Km(l)Ub"

Now

(K:a'))-'P)1) =

and

1 2 3 4

15 1 0 0 Pl(i)

2 1 5 0 -4 106 PQ(I)

3 0 0 5 1 8 P3(i)

40 -4 -1 5 0

I r 10 -6 -1 -5 rP11')

2 -6 30 5 25 2 x 10-81 P2 (1)

I 2 3 4

301
11

I Opsl11

4I

--1
55 25 10

2 -6 30 5 2 x 10-8

I r 10 -6 -11

3 -I 5 10 11

4 -5 25 6

(Kii" ))-'Kio(l)Ubl1J

pill)

1 2 3 4 5 6 7 8

1 10 -6 -1 - 1 -4 0 -1 -.1-
2 -6 30 5 25 2 x 10- 6 2 0 0 -1 -1 106
3 -1 5 10 6 11 3 -1 1 -4 0 8

4 --5 25 6 30 4 1 -1 0 0-

5 - 120 -196 -11
1)

6 -76 456 55 2 x 10-6 PI:
7 -11 197 120 131

lP l)
8 -55 461 76

s

1 -1,341 2,1 51 100 plll
2 2,151 -9,3 69 -2,172 2 x 10' 0 p 11>

3 100 -2,1 72 -1,341 1 1 x 13 1
2

4 1171) -9 3 64 2 151 Ps
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Hence

1 10 -6 -11
2 -6 30 5

3 -1 5 10

4 -5 25 6

2 x 10-6

11

1--1,341 2,151 100
(1

2 2,151 -9,369 -2,172 2 x 10-6
3 100 -2,172 -1,341 11 x 131

F1

p2(1>

2,172 -9,364 -2,151 P(1)

1 241 -267 -21
2 -267 1,209 257

3 -21 257 241

4 -257 1,149 267

1 3.679 -4.076
2 -4.076 18.458

3 -0.321 3.924

4 -3.924 17.542

2 x 10-6
p1(1)

P20)
131

ll)pa

-0 321 p1 (1)

3.924
x 10-e p2u)

3.679
p (l)e

4.076
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The matrices Ub and Ui0) give all the required displacements. The element
forces and stresses on individual elements can then be determined from the
element stiffness matrices and the joint displacements.

9.3 SUBSTRUCTURE ANALYSIS BY THE MATRIX FORCE METHOD278

UNASSEMBLED SUBSTRUCTURES

For generality, it will be assumed that the complete structure is divided into N
substructures. A typical substructure arrangement is shown in Fig. 9.8, where
a medium-range transport-aircraft structure is divided into six structural
components, wing, center fuselage, front fuselage, rear fuselage, engine pylon,
and vertical stabilizer. Now, consider a typical substructure which has been
detached completely from the remaining substructures (see Fig. 9.9). The
external loading applied to this particular substructure r will be denoted by a
column matrix P(''), where the superscript r denotes the rth substructure.
Since the disconnecting procedure is carried out by cutting all attachments on
the boundaries, we must restore equilibrium and compatibility of unassembled
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FIG. 9.8 Typical substructure arrangement.

(disconnected) substructures by applying joint internal forces to each sub-
structure. For the rth substructure these forces will be denoted by column
matrices Qf'') and F(?), with QfT) representing substructure reactions, introduced
only temporarily to establish a reference datum for substructure displacements
and flexibilities, and Ffr) representing all the remaining boundary forces. The
forces Ff'') will be referred to as the interaction forces. The only restriction
imposed on Q(') is that it must constitute a set of statically determinate reactions

-4-- Interaction forces, Ffr)

-f- Substructure reactions, 0 (r)

<-- External loads, P(r) FIG. 9.9 Substructure forces.
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capable of reacting any general loading. Thus for a general three-dimensional
structure, there will be six forces in Q(r).

The equation of external equilibrium for the rth substructure can be written
in matrix form as

P(r)
CF(r)J

(9.41)

where Q1,. (r) and Qp(r) denote substructure reaction forces due to unit values
of F(r) and p(r), respectively. The formulation of Eq. (9.41) involves only
equations of statics, since the substructure reactions Q(r) are statically de-
terminate. Equation (9.41) for all substructures can now be assembled into a
single matrix equation

Q = [Q,, Q1.1
[F]
P

(9.42)

where Q = {Q(1) Q(2) ...

QF = [QF (,)
QF(2)

... QF(N)J

QP = [QP(1) QP(2) ... QP(N)J

F = (F(') F(2) ... F(N)}

P = {P(U) P(2) ... P(N)}

Q(N)} (9.43)

(9.44)

(9.45)

(9.46)

(9.47)

INTERNAL EQUILIBRIUM OF THE JOINED STRUCTURE

When the substructures are joined together, the external loading P is reacted
by the joined-structure reactions. The force complements to these reactions
will be denoted by the column matrix R. The reaction force complement has
already been introduced in Chap. 8, and it is defined as the force applied by the
structure to the support. The minimum number of reactions is equal to the
number of rigid-body degrees of freedom for the structure; however, additional
reactions may be needed to represent redundant constraints. For example, if
only one-half of a symmetric structure is analyzed under a symmetric loading,
reactions across the plane of symmetry must be introduced to represent the
symmetry constraint. The interaction forces F, substructure reactions Q, and
joined-structure reaction complements R must be in equilibrium at each joint
on the substructure boundaries. A typical joint is shown in Fig. 9.10, for
which the equations of internal equilibrium are

F,(r) + Ff(r+1) = 0 (9.48)

FF+i + FI( I1) = 0 (9.49)
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F(')
1+1

(0)

FV+1)
/+t

(b)

Fic. 9.10 Interaction forces at a typical
joint. (a) rth substructure; (b) 0-1- 1)st
substructure.

Naturally, at some joints the equilibrium equations may contain the substructure
reaction force Q or the joined-structure reaction force complement R.

Equations of internal equilibrium may be formulated with reference to a
common set of axes. However, in general, it is preferable to use pairs of
corresponding boundary forces and formulate equilibrium equations in the
direction of each pair. The internal equilibrium requires then that the sum
of the two forces in every pair must be equal to zero.

The equations of internal equilibrium at the boundary joints can therefore
be obtained simply from the substructure connectivity. These equations can
be expressed in the form

[nQ

Q

'MR nF] R = 0
F

(9.50)

where every row in the submatrices nQ, nR, and n1,. contains only zeros and ones.
Substituting Eq. (9.42) into (9.50), in order to eliminate Q, we have that

R

[n1, nF nA F = 0
P

(9.51)

where nF = nQQF. + nF (9.52)

and n1. = nQQ1, (9.53)

For subsequent analysis it is preferable to combine R and F into a single matrix

` =
LF

I (9.54)
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so that Eq. (9.51) can be rewritten as

[n np]LPJ = 0

where n = [nR fiF]

250

(9.55)

(9.56)

SELECTION OF THE INTERACTION REDUNDANCIES

If the substructures are joined together in a statically determinate manner, the
matrix n is a square nonsingular matrix, and Eq. (9.55) can be solved directly
to yield

F = -n-'n1.P (9.57)

If, on the other hand, the substructures are connected in a redundant manner,
then n is a rectangular matrix with the number of columns greater than the
number of rows, and consequently no direct solution to Eq. (9.55) can be
obtained. For such cases, as explained in Chap. 8, the equilibrium equations
are inadequate in number to determine all the substructure boundary forces,
and they must therefore be supplemented by the equations of displacement
compatibility. In order to formulate the compatibility equations, we must
first select from F a set of redundant interaction forces and then introduce a
set of structural cuts corresponding to the selected redundancies on the sub-
structure boundaries. The cut structure becomes then a statically determinate
one, as far as the boundary forces are concerned. Naturally, each substructure
by itself may be highly redundant. It therefore follows that the substructure
boundary forces P can be separated into interaction redundancies X and forces
Po in the statically determinate cut structure, that is,

(9.58)` = I']
X

Using Eq. (9.58), we can modify the internal-equilibrium equations (9.55)
so that*

[no nx np] X 0

P_]
where [no nx] = n

PO

(9.59)

(9.60)

* Note that the equilibrium equations are of different form than in Eq. (8.58). Terms
with external loading P appear here on the left side of Eq. (9.59) instead of the right side
as in Eq. (8.58).
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Since the forces Po are statically determinate, it follows that no-' exists and that
the solution for Po is

PO = -no 'nxX - no-'nyP
= qxX + qrP (9.61)

where q X = -no-'nx (9.62)

qp = -n0-1np (9.63)

The solution represented by Eq. (9,61) is obtained by the jordanian elimination
technique applied to Eq. (9.59). The rectangular matrix [ii Up] from Eq.
(9.60) is premultiplied by a series of transformation matrices T1, ... , T,,, where
n denotes the number of rows in n, which change the submatrix no from ii into
an identity matrix I. Symbolically, this operation may be represented by the
matrix equation

T. ... Tl[ii nP] = [I no lnx na-1np] (9.64)

The computer program developed for this operation, frequently referred to as
the structure cutter, ensures through the use of flexibility weighting factors
associated with P that the selection of the interaction redundancies X leads to
the stiffest cut structure.78 It should be noted that the columns of ns selected
from n by the computer give a direct indication which boundary interaction
forces have been selected as the redundants.

Combining now Eq. (9.61) with the identity X = X, it follows that

= 0]=LgI]X+[o]P
X

= bxX + b0P (9.65)

[L]
where bx = (9.66)

and bo =
[qp]

(9.67)

represent substructure boundary forces due to unit values of interaction
redundancies X and external loading P, respectively.

The information as to what columns are selected from n for no and nx in
the structure-cutter computer program can be used to formulate two column
extractor matrices N and Hx such that

no = AN (9.68)

and nx = nHx (9.69)
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The matrices N and
analysis as

N=

H, =

0[I]
[t!]

It should be noted, however, that in practice the identity matrices of Eqs. (9.70)
and (9.71) will be interspersed (see the numerical example in 9.4). The main
purpose of introducing N and H is to use them to generate b and by directly
from q x and qp. It can be demonstrated easily that this is obtained from the
equations

bx = Nqx + Hx (9.72)

and bo = Nq1, (9.73)

COMPATIBILITY EQUATIONS

The relative displacements in the directions of the interaction forces F(r) on
each substructure can be expressed as

Yr(*) = DF (r)F(r) DFP(r)r(r) + e1 (N (9.74)

where DI.1,.(r) and DI,.P(r) denote flexibility matrices for the forces F(r) and P(r),
respectively, and eF(r) is a column matrix of initial displacements, e.g., due to
temperature distribution. The matrices DFF(r), DF.,P', and eF(r) are determined
here with respect to the substructure datum established by the substructure
reactions Q(r). For all substructures, Eqs. (9.74) can be combined into a
single matrix equation

vF = DFFF + DFPP + eF (9.75)

where VF = {"F(" VF(2) VF( N)} (9.76)

DFF = f DFF(1) DFF(2) DFF(F'J (9.77)

DFP = 1DFP(1) DFP(2) (9.78)

eF = {ep(1) eF 2) eF(x>} (9.79)

For generality, it will be assumed that the joined-structure reaction supports
move in the directions of R by some specified amounts represented by the
matrix eR. This implies that if sinking of the supports is to be included in
the analysis, the amount of sinking must be entered into eR as negative values.
For rigid supports eR = 0. The structural displacements in the directions of

HIC can be expressed symbolically for the purpose of the

(9.70)

(9.71)
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F and R, relative to the substructure datum on each substructure, are now
defined, and they can be used to establish the equations of compatibility of
displacements on the substructure boundaries. These equations can be derived
most conveniently by the applications of the unit-load theorem, which states
that

e
bx2'I I = 0 (9.80)

LLVF

or bx"VF = 0 (9.80a)

where vF =
I

eR]
(9.81)

Upon substituting Eq. (9.75) into (9.80) it follows that

0 0 R 0 en
bxnl 1 r 1 + byTr IP + bYTL 0 (9.82)

L0 DFF F LDFPJ eF

or bYTDFl,'P + bxTDFPP + bxTe = 0 (9.82a)

1where
0 .

0 DfI.
(9.83)

DFP = (9.84)
DFP0

e=
eF

el'L

(9.85)

Using now Eqs. (9.65) and (9.82a), we obtain the following equation for the
unknown interaction redundancies X

bxTDFFbxX + bxTDFFboP + bxTDFPP + bxTe = 0 (9.86)

or DxxX + DxpP + Dx6 = 0 (9.86a)

with Dx1 = bxTDFFbx (9.87)

DxP = bx"DFFbo + bxTDFP (9.88)

Dxe = bxTe (9.89)

JOINED STRUCTURE

The solution for the redundancies X from Eq. (9.86a) is

X = -Dxx-'(DxpP + Dx6) (9.90)

or x = XI'P + Xee (9.90a)
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where XP = -DxX 'Dxp (9.91)

and XQ = -Dxx 'bxT (9.92)

represent the interaction redundancies due to unit values of external loads P and
initial displacements e, respectively.

Substituting Eq. (9.90a) into (9.65), we have finally that

P = (bo - bxDxx-'Dxp)P - bxDxx 'Dxe (9.93)

or F = FPP + Fae (9.93a)

where Fp = bo - bxDxx-1Dxp (9.94)

and P, = -bxDxx-1bxz' (9.95)

represent the substructure boundary forces due to unit values of external loads
P and initial displacements e, respectively. It should be noted that the sequence
of forces in F is first R followed by F(l), F«I, ... , Fm'I, . . . , Ftn'". Consequently,
the interaction forces for any substructure can easily be identified and extracted
from the computer output. These forces are then used to determine the stress
distribution in the substructures, the size of which is such that small-capacity
stress-analysis computer programs can be used. The stress analysis of the
substructures may, of course, be carried out either by the matrix displacement
or force methods. A schematic flow diagram for the complete analysis by the
present method is shown in Fig. 9.11, where for simplicity only the main steps
in the computation have been indicated.

DEFLECTIONS

To determine a deflection of the joined structure a unit load (either concentrated
force or moment) is applied in the direction for which the displacement is
required, and for convenience this load will be assumed to coincide with one
of the external loads P. Denoting the required displacement by A, it follows
that the virtual complementary work 6W* is simply

6W*=1x0 (9.%)

Using now Eqs. (9.75), (9.81), and (9.83) to (9.85), we find the relative dis-
placements in the directions of P due to the external loading and initial de-
formations to be

VF = $FFF + 0FPP + e

while the relative displacement in the direction of 0 is

(9.97)

VA = AeF'F + DAPP (9.98)
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Compatibility
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no. 9.11 Flow diagram for stress analysis. The encircled symbol D indicates matrices used
in the deflection analysis.

where DAF and DA, represent displacements due to unit values of P and P,
respectively. The virtual complementary work can therefore be expressed,
alternatively, as

6W* = bATVF + 1 X VA (9.99)

where bA represents the interaction forces P in equilibrium with the unit load in
the direction A.

After equating Eqs. (9.96) and (9.99) and then using Eqs. (9.97) and (9.98)
it is clear that the displacements on the joined structure can be calculated from

A = NAT DFF + DAF)P + NAT DFP + DAP)P + bATe (9.100)
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Ftc. 9.12 Flow diagram for deflection analysis.
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P.

DOp

T-DFP +DAP

P

Substituting Eq. (9.93a) into (9.100), we can demonstrate that

A=OPP+&ee
where OP = (be LI,.F + $AF,)PI, + bATf p1, + DAP

and A. = bAT + (bAT IiFF + IT)AF)Pc

(9.101)

(9.102)

(9.103)

represent the joined-structure displacements due to unit values of P and E.
Equation (9.102) can be used to determine the flexibility matrix for the directions
of the applied loads P if be is used in place of bA. A schematic flow diagram
for the deflection analysis is shown in Fig. 9.12.

In practice, the matrices bA, OAF., and DAP are determined from

bA = beCA (9.104)

f)AF = CAfPF (9.105)

DAP = CADPP (9.106)

F,
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where C, and Ce are suitable extractor matrices. The matrices 1brr,
and D1P are compiled from the substructure flexibility matrices of the form

DFF(r))D(r) -
[DPFT DPP(r) (9.107)

9.4 SUBSTRUCTURE FORCE ANALYSIS OF A TWO-BAY TRUSS

To illustrate the substructure force analysis we shall again use the example in
Sec. 9.2, as this allows a direct comparison of the two methods. As before,
the structure is partitioned into two substructures by disconnecting the outer
bay from the remainder of the structure. An exploded view of the two sub-
structures with all the boundary forces F and Q is shown in Fig. 9.13. The
truss is supported at one end in a statically indeterminate manner by four
reactions. The reaction-force complements on the joined structure are
represented by the symbols R1, . . . , R4, and their locations are shown in
Fig. 9.13.

fR4
P2

- Pt

P3

a
F
2

I I

(2) / \ A (2) (

Q-i(IT/ \-DI

t02(2) tF4(2) 021)

P2
(1)

Substructure 2 Substructure I

FIG. 9.13 Substructure boundary forces.
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Because of the simplicity of the structure, the complete analysis has been
carried out without the aid of a computer. Only the main steps in the analysis
are reproduced below. The units used are pounds and inches.

EQUATIONS OF EXTERNAL EQUILIBRIUM
FOR THE SUBSTRUCTURES

External equilibrium equations are set up using Eq. (9.41).

SUBSTRUCTURE I

Q(1) = [QF,(1) QP(1)]

Q1u) 0 0 -1
Q2(1) _ -1 0 -1
Q3(I) 0 -1 1

-I

0

0

F,('),

SUBSTRUCTURE 2

Q(2) = [QF(2)][ (2)]

Q1(2) 0 -1 -I -1 0

Q2(2) = 0 -1 0 -1 -l
Q3(2) -1 1 0 1 0

F,(2)

F2(2)

F3(2)

Fq(2)

Fs(2)

(a)

(b)

COMBINED EQUATIONS OF EXTERNAL EQUILIBRIUM

It should be noted that in the present example QP(2) is not used since there are
no external loads P(2) applied to the structure. The diagonal matrix QP in
(9.45) therefore is reduced to only one column of submatrices. Hence the
combined equations of external equilibrium (9.42) become

F(z)

F(1)

W-
IQ"?(,) 0

QP(1)1

Q20 Qp,(2) 0
IQ:,:] p(1)

EQUATIONS OF INTERNAL EQUILIBRIUM

It is easy to verify, using Fig. 9.13, that the equations of internal equilibrium
(9.50) are
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FQ1119 I

Q2(1)

Q311) 3

Q1(2) 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- Q2(2) 50 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 I

Q3(2) 60 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

R1 7
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

R3 8
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 = 0 (d)

1

R 9
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

3

1

R4 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

I f 1"F I I0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1

F 12) 120 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
1

F2(2) 13

F3(2) 14

F4(2) 15

F6(2) 16

The equations of internal equilibrium may be described as connectivity relations
defining connections between the substructures. Substituting Eq. (c) into (a),
we obtain the following matrix equation [see Eqs. (9.51) or (9.55)].

(-R1 -1 1

R2 2

1 2 3 4 5 6 7 8 9 10 11 12 13 R2 3

0 0 0 0 0 1 0 0 0 0 -I I 0- R,1 4

0 0 0 0 1 0 1 0 0 0i 0 0 0 5

0 0 0 0? 0 0 0 1 0 0: 0 -1 -1 F1121 6

0 0 0 0 -1 0 0 0 1 0; 0 -1 0 F2(2) 7=0 (e)

0 0 1 0 0 -1 1 0 1 0 0 0 0 F214) 8

0 0 0 1 0 0 0 0 0 1 0 0 0 F4121 9

1 0 0 0 0 0 -I -1 -1 0 0 0 0 F6(21 to

0 1 0 0 0 0 -1 0 -1 -1 0 0 0 p11i1 11

F2'1) 12
P,.

u) 13
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FLEXIBILITY MATRICES

The flexibility matrices for the two submatrices have been calculated using the
standard matrix force method of analysis. It should be noted in this connection
that substructure I is statically determinate while substructure 2 has one
redundancy.

DFF(1) = [22] x 10-e (f)
DFI,(1) = [-2 10 -2] x 10 -8 (g)

2 2 0-
DPP(1) _ -2 10 0 x 1 0-6 (h)

0 0 2

1.8333

-1.1667 5.8333 Symmetric

DFF(2) = -0.1667 0.8333 1.8333 x 10-1 (1)

-1.0000 5.0000 1.0000 6.0000

L-0.1667 0.8333 -0.1667 1.0000 1.8333)

The flexibility matrices DFP(2) and DPP(2) are not used since no external loads
are applied to the substructure 2.

COMBINED FLEXIBILITY MATRICES

From Eqs. (9.77), (9.78), (9.83), and (9.84) it follows that

DFF, _

$FP =

0 0 0

0 DFI,,(1) 0

0 0 DI F(2)

DFP(1) = DI,F1'

0

(J)

JORDANIAN ELIMINATION (MATRICES by AND be)

Application of the Jordanian elimination technique, represented symbolically
by Eq. (9.64), to the equilibrium equations (e) leads directly to the generation
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of the matrices qx and qp given by Eqs. (9.62) and (9.63). A number of
column interchanges were required to continue with the elimination process.
The forces F1t11 and F6161 were selected as the redundant boundary forces.
The results obtained are shown by Eqs. (I) and (m), where the numbers assigned
to rows and columns refer to the original column numbers in Eq. (e). Thus
the redundant boundary forces are identified by numbers 5 and 10. Only the
final steps leading to Eqs. (9.72) and (9.73) are reproduced.

6 7 8 9 3 4 1 2 5 10 5 10

1 -0 0 0 0 0 0 1 0
5 10 I 0 1 0 01

2 0 0 0 0 0 0 0 1 6 0 0 2 0 0 2 0 1

3 0 0 0 0 1 0 0 0 7 -1 0 3 0 3 0 0

4 0 0 0 0 0 1 0 0 8 0 0 4 0 0 4 0 -1
5 0 0 0 0 0 0 0 0 9 1 0 5 1 0 5 1 0bx=Ngx+Hx=
6 1 0 0 0 0 0 0 0 3 0 0 +6 0 0 6 0 0

7 0 1 0 0 0 0 0 0 4 0 -1 7 0 0 7 -1 0

8 0 0 1 0 0 0 0 0 1 0 0 8 0 0 8 0 0

9 0 0 0 1 0 0 0 2 0 I 9 0 0 9 1 0

10 0 0 0 0 0 0 0 0- 10 LO Li 10 0 1

(1)

6 7 8 9 3 4 1 2 II 12 13

1 0 0 0 0 0 0 1 1 0 2 1
11 12 13

2 0 0 0 0 0 0 0 1 6 1 -1 0 2 0 1 0

3 0 0 0 0 1 0 0 0 7 0 0 0 3 1 -2 0

4 0 0 0 0 0 1 0 0 8 0 1 1 4 0 0 0

5 0 0 0 0 0 0 0 0 9 0 1 0 5 0 0 0 (in)
b0 = Ngr =

6 1 0 0 0 0 0 0 0 3 1 -2 0 6 1 -1 0

7 0 1 0 0 0 0 0 0 4 0 0 0 7 0 0 0

8 0 0 1 0 0 0 0 0 1 0 2 1 8 0 1 1

9 0 0 0 1 0 0 0 0 2 0 1 0 9 0 1 0

to 0 0 0 0 0 0 0 0 10 0 0 0

COMPATIBILITY EQUATIONS

Since there are no thermal strains, Eq. (9.86a) reduces to

DxxX + DxpP = 0 (n)
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where

Dxx = b XT
r23.8333 0.16671

L
Jx10

0.1667 1.8333

Dxr = bxsf)FFbo T bXTDFP

262

(0)

1.8333 11.000 0 1.8333
X 10-e (p)-0.1667 1.000 0 -0.1667

Hence X = -Dxx-1DxrP = XpP
0.07634 -0.45802 0.076341[
0.08397 -0.50382 0.08397

P (q)

SUBSTRUCTURE BOUNDARY FORCES

The boundary forces R and F due to unit values of the external loads are
calculated from Eqs. (9.91) and (9.94). Hence

Pp =bo-bxDxx-'Dxr=bo+bxXP
i V 0 2.0 1.0 -1

2 0.08397 0.49618 0.08397
R

3 1.0 -2.0 0

4 -0.08397 0.50382 -0.08397
(r)

5 0.07634 -0.45802 0.07634

6 1.0 -1.0 0

7 -0.07634 0.45802 -0.07634
F

8 0 1.0 1.0

9 0.07634 0.54198 0.07634

10, 0.08379 -0.50382 0.08397

The actual boundary forces due to the external loading P are calculated from
P = PPP. These forces are then applied to each individual substructure in
order to find stress distribution within the substructures.

DEFLECTIONS

To determine deflections in the direction of the applied forces P we may use
be = b0. Hence from Eq. (9.102) deflections due to unit values of P are given
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by

OP = (bo"BFF + $PF)IlP T b0 FP + Dpp

where in the present example

OPP = DPPU)

Using previously calculated matrices, we get

3.679 -4.076 -0.32061

Op = -4.076 18.46 3.924

-0.3206 3.924 3.679

x 10-6

(s)

(1)

(u)

The deflections given by Eq. (u) agree with the results obtained using the sub-
structure displacement analysis for the example in Sec. 9.3.

PROBLEMS

9.1 Calculate substructure flexibilities for the example in Sec. 9.4.

9.2 Using the jordanian technique applied to Eq. (e) in Sec. 9.4, verify that the matrices
ba and bo are given by Eqs. (1) and (m).



CHAPTER ]O
DYNAMICS OF
ELASTIC SYSTEMS

So far we have discussed matrix methods of structural analysis applied to static
loading; however, in many applications we require determination of stresses and
displacements under dynamic loading conditions. For such cases, in addition
to the previously derived structural stiffnesses or flexibilities we must also
introduce inertia properties in order to describe the dynamic characteristics of
the structure. This chapter gives an introduction to the general theory of
structural dynamics with particular emphasis on the discrete-element represen-
tation of the actual continuous elastic systems.

10.1 FORMULATION OF THE DYNAMICAL PROBLEMS

When dynamic loading is applied to an elastic body (or structure), the elastic
displacements u are functions not only of the coordinates but of the time as well.
An infinitesimal element of volume dV at an arbitrary point is then subjected to
an inertia force - pu dV, where p is the density of the body around the point and

ux

(10.1)

U.

represents a column matrix of accelerations measured in the cartesian co-
ordinate system. In accordance with d'Alembert's principle, a corollary of
Newton's second and third laws, the equations of motion are obtained from the
condition of equilibrium of the element when the inertia forces are taken into
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account. Since the inertia forces are proportional to the volume of the element,
they constitute body forces; thus the inertia body forces, distributed throughout
the elastic system, are given by

Xinertin - -Pu (10.2)

This indicates that the equations of motion of an elastic system can be obtained
by introducing additional body forces, as given by Eq. (10.2), into the equations
of static equilibrium.

We shall consider now an unconstrained body which is initially at rest. If the
body is rigid and we apply an external load suddenly, all points in the body
instantaneously acquire certain constant accelerations, which may be determined
from the condition of equilibrium of the applied load and the inertial forces
acting on the body as a whole. If the same load is applied to an elastic body,
some points may have displacements relative to each other. Therefore when an
external load is applied to the surface of an elastic body, the points are not set in
motion all at once. The points in the immediate neighborhood of the applied
load move first. This in turn produces strains in the region of the body con-
tiguous to the loaded area, inducing stresses there which bring into play the
next layer of points; these in turn transmit the motion to points in another layer,
and so on, until all points participate in the motion. Thus we reach the con-
clusion that, in an elastic body subjected to dynamic loading, deformations must
propagate with a finite velocity. Only when the body is rigid will the velocity of
propagation be infinite. Since the rigid body may be considered as a physical
limit (not attainable in reality) of an elastic body, we may postulate that the
velocity of strain propagation is represented by an increasing function of the
elastic moduli. Typical distributions of point velocities in rigid and elastic
bodies are illustrated in Fig. 10.1; in a rigid body subjected to a suddenly applied
load all points acquire constant velocity instantaneously without any strains,
while in an elastic body points acquire velocities gradually, and this is

FIG. 10.1 Velocity distribution after instantaneous application of a
concentrated load. (a) Rigid body (all points acquire constant velocity
suddenly); (b) elastic body (points acquire velocities gradually).
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accompanied by a straining action resulting from relative displacements in
different parts of the elastic body.

Complete analysis of the dynamic deformations of elastic bodies presents
considerable mathematical difficulties. Fortunately, in most structural prob-
lems involving dynamic loading we need not concern ourselves with the prop-
agation of waves in elastic bodies or structures. Many dynamic problems can
be approached as oscillations of the complete structure in which all the points
execute periodical motion. These oscillations may be treated as being formed
by superposition of similar counterrunning wave trains resulting in standing
waves, which may also be regarded as the steady-state condition of the wave-
propagation problem. The oscillation problems can be solved by methods
independent of the theory of wave propagation. Solutions to such problems,
using matrix methods for discrete-element structures, will be studied in this and
in subsequent chapters.

10.2 PRINCIPLE OF VIRTUAL WORK IN
DYNAMICS OF ELASTIC SYSTEMS

Consider an elastic body which undergoes a deformation under the action of
dynamic loading (see Fig. 10.2). At any particular instant of time we can assume
that the displacements u acquire virtual displacements du. The virtual displace-
ments are infinitesimal and otherwise arbitrary but compatible with the boundary
conditions on the body. Furthermore, the virtual displacements produce com-
patible virtual strains be from which, for a known instantaneous stress distri-
bution, the virtual strain energy dU; for the system can be calculated at the
given instant of time. The virtual work of external forces will now consist not

(D =c (x.y,z,t)

Pi(t) Pi(t)
Vi(t)

FIG. 10.2 Elastic body or structure subjected to dynamic
loading.
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only of work by the actual body forces and surface forces but also of work by
the inertia forces represented as body forces, according to Eq. (10.2). Using
therefore the results of Chap. 3, we see that the principle of virtual work
generalized to include dynamic conditions may be expressed as

bU =aW- p our6dV (10 3)s
JN

where, as before,

bU= =
J

aET c dV

.

(10.4)
v r

and bW =
J

auT 4, dS + fau7'XdV+ OUT P (10.5)
s

The third term on the right-hand side of Eq. (10.5) represents the virtual work of
external forces P in moving through the corresponding virtual displacements
6U.

Equation (10.3) states that in a virtual displacement of the body from its
instantaneous state of equilibrium, the increment of strain energy, i.e., virtual
strain energy, is equal to the sum of the virtual work of all the forces, including
the inertia forces. In the state of rest Eq. (10.3) takes the simpler form

bU{ = SW (10.6)

which represents the principle of virtual work for static systems.

10.3 HAMILTON'S PRINCIPLE

We consider next an elastic body the deformations of which vary continously
between the instant of time to and t1; thus, the displacements u in the body are
functions of the time t. We introduce virtual displacements au varying with
time in such a way that bu = 0 at the instants to and t1. Integrating the equation
representing the principle of virtual work for dynamic systems

bU;=aW- J p auTad V (10.3)I
over the time interval to to t1, we have

fJ

t18UUdt=f (10.7)
t0 0 t0 D

The second integral on the right-hand side of Eq. (10.7) can be related to the
variation of the kinetic energy K of the system. Since the kinetic energy is
defined as

K = 2 f paTU dV (10.8)
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luu-

where iu (10.9)

Z

represents a column matrix of velocities measured in the cartesian coordinate
system, it follows that

( p6uTu)dV- f Bu'iidV (10.10)
ITI

66TiidV=v6K = JoP

Integrating Eq. (10.10) over the time interval to to t1, we have

516 di = 5:'[i (8uT u) dvl dt - Jt(f 8uT u dVl dt

r1:1 - rr /

= fv p 8uT u dV - f

t11

(Jvp 8uT a dV) dt
0 o

_ -Jf:1(Jvp 80' u dV) dt (10.11)
0

where p 8uT u I = 0 in view of the assumptions made that the virtual displace-
lo

ments du are zero at the time instants to and t1.
Substituting Eq. (10. 11) into (10.7) gives

8It'(U1-K)dt=J`16Wdt (10.12)
to to

If the loading is conservative, i.e., if the work done by external loads is inde-
pendent of the load path taken and dependent only on the end points (final
displacements), then Eq. (10.12) can be rewritten as

Uo)dt=0 (10.13)
to

where U0 is the potential energy of external forces. Introducing the total
potential energy

U = U{ -}- U. (10.14)

into Eq. (10.13), it follows that

(10.15)
to

Equation (10.15) is Hamilton's principle, which states that the integral

1(U - K) dt takes a stationary value in an elastic system subjected to con-
Jf(o
servative dynamic loading. In the special case of a static loading Eq. (10.15)
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becomes the principle of minimum potential energy (see Chap. 3)

6,U = 0 U = minimum (3.59)

For rigid bodies Ut = 0, and Eq. (10.15) reduces to the familiar form

aI (W+K)dt=0 (10.16)
11

10.4 POWER-BALANCE EQUATION

If we assume that the virtual displacements du are identical with the actual
increments of displacements du and u + du are the actual displacements at the
time instant t + dt, then

8u= audt=6di=du (10.17)

The variation in strain energy during the time dt is given by

6U{=aatdl=dUj (10.18)

while the increment in kinetic energy is determined from

dK =J

=J

puTU dt dV
r

p duT ii dV (10.19)
v

Substituting Eqs. (10.18) and (10.19) into (10.3) and using Eqs. (10.5) and
(10.17), we have

d
dt

(Ut + K) = R 74 dS + 8671 dV + UTP (10.20)

The terms on the right of the last equation consist of a sum of products of force
and velocity vectors which represents the rate of doing work, i.e., power, while
the left side represents time rate of change of the sum of elastic and kinetic
energies of the system. Thus Eq. (10.20) may be described as the power-
balance equation for an elastic system subjected to dynamic loading.

10.5 EQUATIONS OF MOTION AND EQUILIBRIUM

CONTINUOUS SYSTEMS

All equations of elasticity theory derived for continuous elastic system can be
adapted immediately to dynamic loading conditions by including inertia forces.
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The equations of stress equilibrium in the x, y, and z directions are modified by
the addition of the inertia body forces represented by Eq. (10.2), so that

aaxx aQ-V aaxz

ax + ay + az + Xx = 0.

aa'x + aavy + aayz +
Xv = pii9i (10.21)

ax ay az

aazx + aazv + aa. +
X. puzax ay az

while the moment equilibrium of stresses remains unchanged as

a;j = a;; (10.22)

Stress equilibrium equations at the surface of an elastic body remain the same
as in the static loading case, that is,

la.+maxv+naxz=(Dx

Iavx + 777avv + navz = (Dv

lazx+marv+naZ,=4=

(10.23)

The equilibrium equations for external forces and inertia forces can be
obtained directly from Eqs. (2.64) and (2.65) by including inertia body forces.
Hence

fcb dS +fX. dV + EPx =f
vpux

dV

(DvdS+ fvXvdV+EP,,=J puvdV (10.24)

cpz dS +f X dV + EP,, =J puz dV

5(zY-vz)dS+J(Xzy-Xz)dV+=fp(uy-uz)dV
V VV

(cDxz - (Dx) dS + (Xxz - Xx) dV + EMv =J p(uaz - dV (10.25)
Jv v

(py) dS +f(Xvx - Xxy) dV + EME =f p(iivx - iiy) dV
8 o
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Once the solution for the displacements u has been obtained in any particular
problem, Eqs. (10.24) and (10.25) can be employed for checking purposes to
ensure that the dynamic equilibrium is satisfied.

Although Eqs. (10.21) and (10.22) represent conditions of dynamic stress
equilibrium, they can also be described as equations of motion of an elastic
system. In fact, these equations are the governing equations for the displace-
ments of the system. We can assume that at any instant of time Hooke's law
is obeyed, and this then implies that all stresses in Eqs. (10.21) can be expressed
in terms of strain components, and hence in terms of displacement derivatives;
thus, we can obtain three partial differential equations for displacements.
Solutions of these differential equations determine the propagation of stress
waves in an elastic system subjected to some specified dynamic loading; however,
such problems are beyond the scope of this text and will not be discussed here.

DISCRETE SYSTEMS

In matrix methods of structural analysis we deal with discrete quantities,
concentrated forces and moments, deflections and rotations at a point, etc.
Consequently, all equations of elasticity for continuous media must be reformu-
lated as matrix equations using these discrete quantities. For static problems,
the displacements u in a continuous structure can be related to a finite number of
displacements selected at some arbitrary points on the structure. This relation-
ship is expressed by the matrix equation

u = aU (10.26)

where u = {u. U it.} (10.27)

U = {U1 U2 ... (10.28)

a = a(x,y,z) (10.29)

Equation (10.26) is valid only for small deflections. For large deflections, no
such single relationship can be used in which the coefficients of the matrix a are
functions of the coordinates only.

If we now use the strain-displacement equations (2.2), the total strains can be
determined from

e = bU (10.30)

where b = b(x,y,z) (10.31)

is obtained by differentiation of the matrix a.
In dynamic problems the simple relationship (10.26) is not valid, except in

some special cases; however, if a large enough number of displacements U
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are considered, the relationship u = aU will be a good approximation, provided
U is determined from the dynamic equations of the system. This relationship
will be employed to formulate an equivalent discrete-element system from a
continuous system. To accomplish this we start with the principle of virtual
work for dynamic loading

bU,=bW -I pbu'iidV (10.3)J
The virtual displacements 6u and virtual strains be can be obtained from Eqs.
(10.26) and (10.30). Hence

On = a SU (10.32)

and be = be = b bU (10.33)

After introducing Eqs. (10.32) and (10.33) into (10.3) and using the generalized
Hooke's law

a = xe + xTaT (2.14)

it follows that

four bTxbU dV +
J

bUT b7'xTaT dV =
J

bUT' a2'dS +
J

bUT
v s r v

+bUTP-J pbUTaTadV (10.34)
v

Since the virtual displacements are arbitrary and

ii = aU (10.35)

Eq. (10.34) can be rewritten as

M>U+KU=P-JbTXTa.TdV+JaTedS+dV
a

(10.36)

r
v

whereM =
J

paTa dV (10.37)

represents mass matrix of the equivalent discrete system and

K=JbTxbdV (10.38)
v

is the stiffness matrix for the displacements U. The first term on the right of
Eq. (10.36) represents a column of external concentrated loads; the second term
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represents equivalent concentrated forces due to temperature distribution; the
third and fourth terms represent equivalent concentrated forces due to surface
forces and body forces, respectively. Thus, Eq. (10.36) serves not only to
determine the discrete-system mass and stiffness characteristics but also to con-
vert distributed loading into one consisting of discrete forces.

Equation (10.36) represents equations of motion of the discrete system.
These equations are coupled through the of diagonal terms in the mass and
stiffness matrices. It should be noted that mathematically the displacements
U in the equations of motion may be regarded as the degrees of freedom of the
system.

10.6 STATIC AND DYNAMIC
DISPLACEMENTS IN A UNIFORM BAR

In Chap. 5 we have shown that the static displacements in a uniform bar having
prescribed displacements U1 and U2 at the two ends are given by

1

(10.39)U
[(1 - l)

][U]
U2

where I is the length of the bar. Equation (10.39) is of the form u = aU, and
hence

a = C(1
_X1)

x]

I
(10.40)

We shall now assume that both U1 and U2 will be some specified functions of
time and obtain the solution for u, in terms of U1 and U2 (see Fig. 10.3). We
start with the equation of motion given by the first equation in (10.21). Noting
that the only stress component present is a. = Ee, = E dujax, it follows
immediately from Eq. (10.21) that the equation of motion becomes

as

C2 axe - fix = 0 (10.41)

where c2 = E (10.42)
P

The boundary conditions are

uu(0,t) = U1(t) (10.43)

and u(I,t) = U2(t) (10.44)

u,(t) u2(t)

J
FIG. 10.3 Uniform bar with time-varying
end displacements U(t) and U,(1).
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while the initial conditions will be assumed to be

uu(x,0) = iim(x,0) = 0 (10.45)

With use of the Laplace transforms

00

ux(x,p) = e-ptua(x,t) dt (10.46)
0

Ui(p) = 5 dt (10.47)
0

U2(p) =
J

'e-vtU2(t) di (10.48)

the equation of motion (10.41) and boundary conditions (10.43) and (10.44)
transform into

c2 p2utt = -puz(x,0) - ux(x,0) = 0 (10.49)

ux(0,p) = Ul (10.50)

u.(1,p) = U2 (10.51)

The right side of Eq. (10.49) vanishes in view of the homogeneous initial
conditions (10.45), and hence the solution for u. can be represented by

u., = A(p) sinh pa + B(p) cosh Px
c c

(10.52)

where the functions A(p) and B(p) can be determined from the boundary
conditions (10.50) and (10.51). This yields

A U2 - Ul cosh (pl/c) 10.53p)= sinh (p1/c) ()
B(p) = Ul (10.54)

sinh [(p/c)(1- x)] sinh (px/c)
Hence u. = Ul(p) + U2(p) (10.55)

sinh (pl/c) sinh (pl/c)

Noting that for functions G(p) and F(p)

G(p) G(p) ex p P 1

(10.56)F(p)
'i [- F(p)]=µ

P

where ,u are the roots of

F(u) = 0 (10.57)
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we have

2sinh {[p(l - x)]Jc} _ 2c n.,r

I
n7rct

sinh (pl c) j I (-1)n+I sin (l - x)sin - (10.58)
n=1

[Sinh (px/c) 2c nvrx mrct

sinh (pl/c)

_1
n1=1(-1)"+' sin I sin

Making use of the convolution theorem

"-'1A(P)A(P)1 = f tfl\r)J2(t - T) di
0

(10.59)

(10.60)

in conjunction with Eqs. (10.58) and (10.59), we can show that

2c
1 (-1)n}1 sin [1 (l - x)JJo'U1(T) sin I -lc (t - T)] dr

+ c I(-1)n+1 sin n1x J `UZ(T) sin [.(i - T)] d7- (10.61)
n=1

It is clear from the above equation that for dynamic boundary conditions
the displacements uu(x,t) cannot be related to the instantaneous values of the
boundary displacements U1(t) and U2(t). The relationship is in the form of an
integral evaluated for times I = 0 to t, and this means that at any instant of time
u,,(x,t) depends on the previous time history of the boundary displacements.
This incidentally also explains why, in general, no simple relationship of the form
u = aU can be obtained for dynamic conditions. A similar problem could be
solved in which instead of specified boundary displacements we would use
specified boundary forces varying with time.

The dynamic displacements given by Eq. (10.61) can also be applied to the
special case of static displacements if we observe that the static condition is
obtained from the dynamic one by applying the boundary displacements at an
infinitesimally slow rate, so that the final values of displacements are attained
at t = oo. We shall therefore assume that both U1 and U2 are being increased
exponentially according to

U5(t) = U5.sttic(1 - e-Ra - fte-Pt) J = 1, 2 (10.62)

where 0 < ft < E (10.63)

and E is an arbitrarily small constant (see Fig. 10.4). Equation (10.62) also
satisfies the initial conditions UF(O) = U5(0) = 0.

J. static
FIG. 10.4 Infinitely slowly increasing dis-
placement representing static condition at
t=oo.
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Introducing now the boundary displacements, as given by Eq. (10.62), into
the integrals in Eq. (10.61), we have

Jo U1(t) sin
11c

(t - T)] dT

= U5 staticfo (1 - e-p' - fl re-ar) sin [n c (t - T)] dT

rcos [(nrrc/l)(t - T)] e_r n7rc ( )
= U at tic[

n7rc/l R2 + n2,T2c2/12 (- sin 1
t - T ]

f

+ n?rc mrcr I cos 1 (t - T)

4Te-fir ( rn,-c n7rCj - sin L 1 (t - T) 1 cos L

l

(t - T)

rfle 2 -QQ 2n 2C
sin

nnrc (t - )
//Q/

(P2 n2V2C2/12)2
N 12

1 T

2 cos (t - )]l LI T
o

` 1 (mrc/1) e-at (3t(nirc/1)e-Nc 2 #2(nirc/1) e 11
= U3.etatic

ln7rc/1 #2 + n2Tr 2c2 /12 #2 + n2nr2c2/12 (fl2 + n27r2c 2/12)2

_ cos [(nirc/1)t] _ fi sin (nnrct/1) (n7rc/1) cos (nlrct/1)

n7rc/1 X92 + n27r2c2// + #2 + n2'r2c2/12

n21r2c2/!2) nirct 2#2(nrrc/l) narct
2 2 2 2 2 2

sin 1
2 2 2 2 2 cos - (10.64)( +nrrc/1) 1 ((3 F 1

Because of the restriction imposed on by Eq. (10.63) it follows from Eq.
(10.64) that for t = oo

cinLlU9.8tatic (1 - e-Pr - pre-Pr) s cUU,a .u. (10.65)(t-T)]dT=nor
0

Introducing now Eq. (10.65) into (10.61), we obtain
2 (-1)n+1 mr

Ux.static = - Ul.atatic sin C- (l - x)]
9r nai n L 1

2 w (-1)n+1 nirx
+ - U2.at8tlc sin -

Ir _1 n 1

_ (1 - 11 U1.et8tte +
%

U2.atatia (10.66)

which agrees with our solution for static displacements. The summations in
Eq. (10.66) can be recognized as Fourier series expansions for 1 - x/1 and x/1.

Let us suppose now that a uniform bar of length I performs harmonic forced
vibrations, produced by varying end displacements (see Fig. 10.5) so that

U1= ua(O,t) = 41ei°: U2 = uu(l,t) = g2ei0 (10.67)



DYNAMICS OF ELASTIC SYSTEMS 277

q,e1wt q e%Wt no. 10.5 Uniform bar with harmonic end

I

displacements g1e'm0 and gye0o,t.

where ql and q2 represent the displacement amplitudes. The displacements in
the bar will be assumed to be given by

ux = g(x)etoit (10.68)

where g(x) is a function of x only. Introducing Eq. (10.68) into (10.41), we
have
d2g cot

dx2+c2 g 0

Hence g= Asincux+Bcoswx

C c

The constants A and B are
Hence

A =

(10.69)

(10.70)

determined from the boundary conditions (10.67).

q2 - ql cos col/c
sin cul/c

B = ql

provided sin
wl

0
C

or - 0 n7r
c

(10.71)

(10.72)

(10.73)

where n is an integer. Using Eqs. (10.70) to (10.72) in (10.68), we have

ua = F22

s nl
cos () l/c) sin x + q cos - xI ecwt

r( cox wl wx) cvl wx] qi emtL cos - - cot - sin - cosec - sin - e (10.74)
C c c c c

q2

When co = nlrc/l, the forcing frequency is equal to the natural frequency of a
free bar of length 1, and the displacements ux become infinite.

Equation (10.74) indicates that for harmonic boundary conditions the dis-
placements ud depend on the instantaneous values of the boundary displace-
ments ux(0,t) and uu(I,t). Thus in this case the displacements at any point
along the length of the bar can be related to the boundary displacement
through the relationship

u- = aU (10.75)

where a = a(x,cv) (10.76)

and U is the column matrix of bar end displacements (10.67). This result is
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true for any structure or structural element performing forced or free harmonic
motion; it will be used in Sec. 10.8 to determine frequency-dependent mass and
stiffness matrices for a vibrating bar element.

10.7 EQUIVALENT MASSES IN MATRIX ANALYSIS

The inertia property of an idealized discrete structural system is expressed by
the equivalent mass matrix

M=J pa2'adV (10.37)
U

It is evident from Sec. 10.6 that for a general dynamic loading the matrix a
does not exist, except for special cases, such as static loading or harmonic
motion of the system. Even in these special cases the matrix a may not be
exact because of limitations imposed by the idealization procedures introduced
when a continuously attached structural element is replaced with an equivalent
one having discrete attachments to the neighboring elements. Frequently
static displacement distributions are used to determine a. Thus the mass
representation, as given by Eq. (10.37), will of necessity be only an approxi-
mation; however, when the discrete elements selected are small, the accuracy
of such representation is generally adequate for practical purposes, as can be
judged from the numerical examples considered in subsequent chapters.

In this section we shall determine the equivalent mass matrix for a bar element.
Equivalent mass matrices for other elements will be discussed in Chap. 11. From
Fig. 10.6 it is evident that the displacements at a point distance x from node I
are given by

u1 = U1 + (U4 - U1)

Up = U2 + (U6 - U2) (10.77)

US = U3 + (US - U3)

where _ ! (10.78)

Alternatively, Eqs. (10.77) can be arranged in matrix form as

U1

u 1- 0 0 0 0
U2

= 00 1 0 0 0
Us

u 0 0 1 - 0 0
U4

U5

U4

(10.79)
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FIG. 10.6 Node displacements on a bar element
in datum coordinate system.

1- 0 0 X 0 0
Hence a= 0 1- 0 0 0

0 0 1-. 0 0
(10.80)

Introducing Eqs. (10.80) and (10.78) into (10.37) and denoting the cross-
sectional area by A and the element equivalent mass matrix by m, we have

m=J paTadV
ti

r(1 - )2 0 0 (1 - M 0 0

0 (1 - )2 0 0 (1 - ) 0

=pA! f 0 0 (1-e)2 0 0 (1-
d

0 0 $ 0 0

L

0 e(1 -) 0 0 2 0

0 0 e(1 - ) 0 0 2

E2 0 0 1 0 0-1

0 2 0 0 1 0

pAl 0 0 2 0 0 1 pA/ 213 1a
(10.81)

6 1 0 0 2 0 0 6 Is 213

0 1 0 0 2 0

0 0 1 0 0 2
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U m m2 U FIG. 10.7 Bar element with concentrated
? masses m, and ms attached to its ends.

a

The off-diagonal nonzero terms in m represent dynamic coupling between the
two degrees of freedom; the coupling occurs only for degrees of freedom in the
same directions, i.e., I and 4, 2 and 5, and 3 and 6.

We consider next a uniform bar element with two concentrated masses ml and
rn2 attached to its ends, as shown in Fig. 10.7. Since the concentrated mass can
be regarded as a region of zero volume having infinite density such that the
product of density and volume is finite and equal to the mass, Eq. (10.37) can
still be used to determine the equivalent mass matrix provided the integration is
extended to include the concentrated masses. For simplicity we shall determine
only the inertia properties in the longitudinal direction. The displacements
along the length of the bar are given by

U. = [(1 - )
U,

(10.82)
U2

Hence a = [(1 - ) e] (10.83)

Introducing Eq. (10.83) into (10.37) gives

mJ paTadV
ti

fp(l_)2dV fp(l_dv

fp(1_)dV JP2dV

pA1r2 1 ('

1M1

0 l
6 1 2

+ 0
1112

(10.84)

It follows therefore that the effect of concentrated masses at the ends of an
element is accounted for by adding the actual concentrated masses to the
corresponding diagonal terms in the equivalent mass matrix of the continuous
system. The assembly of the complete mass matrix for a structure made up
from structural elements and discrete (concentrated) masses is discussed in
Chap. 11.
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10.8 FREQUENCY-DEPENDENT MASS AND
STIFFNESS MATRICES FOR BAR ELEMENTS275

It was demonstrated in Sec. 10.6 that for a bar performing harmonic motion the
displacements along the length of the bar are given by

_ I (
ar cos

wx - cot wl
sin

wx
cosec

l oil
sin

Coxl

[q21

ql
efai1 (10.74)L -c

-C -C
J - - J

C c C c

The strain e. in the bar is obtained by differentiation of (10.74) with respect to x.
Hence

xCox

ax

w

C

((.
C

-+cotw
C

-lcosw

C
-sm

E= = L

oil wx q1 rrorcosec - cos-1 e
C cJ qa

Hence, using the notation of Sec. 10.5, it follows that
(10.85)

a = C(cos cx - cot cl sin fix) cosec cl sin cxJ (10.86)

r x wl wx w wl wxww
b = )(sin- + cot - cos -) -(cosec - cos -L-

C C C C/ C C c/ (10.87)

After substituting (10.86) into (10.37) and (10.87) into (10.38) and integrating
over the volume of the bar element it can be shown that the equivalent mass and
stiffness matrices are given by

foil wl oil to/
- cosec - - cos - 1 - - cot -

(
w

Al c cwt C C C C Cl)p
m = 2 wlcosec

c oil wl
(1 - - cot -)

C C C

(10.88)

cosec -
C

+ cos w1)
AE w1 wl C C

k = 21
c

cosec
c wl w1-(1 + 2 cot -)

C

wl 601 oil- cosec - - cos -)
c

- (1 +
wl

cot-C C

cosec
wll

+ cos 1>
c c c

(10.89)

The elements in the above matrices are functions of the circular frequency w.
In numerical calculations we usually require the natural frequencies of the
system, and consequently we cannot use the frequency-dependent mass and
stiffness matrices since the matrix elements are unknown initially. To avoid this
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difficulty the solution for displacements uu will be assumed to be given by a
series in ascending powers of the circular frequency w, so that

uu = aU = I wrarU = wra,,geiae

r=0 r-0

where q=
I92J

(10.90)

(10.91)

and the matrices ar are functions of x only. Substituting Eq. (10.90) into
equation of motion (10.41), we have

00 W
c21 (Ja,geio + w2 I wrargetrol = 0 (10.92)

r=0 r=0

where primes denote differentiation with respect to x. Equating to zero co-
efficients of the same powers of o) in (10.92) gives

ao = 0 (10.93)

al = 0 (10.94)

c2aQ = -a0 (10.95)

c2a9 = -a1 (10.96)

Equations (10.93) to (10.96) can be integrated directly. The first matrix ao
is then used to satisfy the boundary conditions that ux = U1 at x = 0 and ux =
U2 at x = 1, while the remaining matrices a1, a2, a3, ... must all vanish at
x = 0 and 1. This leads to

ao = [(I - ) ]
a1=0

2

a2 = GE [(2S - S3) (S - S3)]

a3=0

Therefore the matrix a in Eq. (10.90) is given by

a=ao+w2a2+...

(10.97)

(10.98)

(10.99)

(10.100)

(10.101)

The matrix ao represents the static displacement distribution due to unit values
of the bar end displacements U, and U2.
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The distribution of strain in the bar is calculated from

e
ax

= u)'argecw' = 0)rbrge;o,1

'_° r=°

where b _ da°

/
[-1 1]

° (IX

b,= tae=0

da,b2=- = PI (1-3 2)]
dx 6E

da3b3= dx =0

283

(10.102)

(10.103)

(10.104)

(10.105)

(10.106)

Hence the matrix b in e = bU is given by

(10.107)

Substituting now Eq. (10.101) into (10.37), we obtain the frequency-dependent
mass matrix

m = m° + w2m2 + (10.108)

where m° =6 12

21l
(10.109)

a 3 1 'pAI2
and m2

e
= (10.110)

45E ' 1

Similarly, substituting Eq. (10.107) into (10.38), we obtain the frequency-
dependent stiffness matrix

k = k° + co4k4 -i- (10.111)

where k° _ AE[
(10.112)

I

-1

1 1

and k4 = (pAl)2and (10.113)

The matrices m° and k° represent the static inertia and stiffness of the bar
element, while m2 and k4 and higher order terms represent dynamic corrections.
Applications of m2 and k4 matrices to vibration problems will be discussed in
Chap. 12.
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10.9 FREQUENCY-DEPENDENT MASS AND
STIFFNESS MATRICES FOR BEAM ELEMENTS275

The equation of motion of a beam element (see Fig. 10.8) in the transverse
direction is given by

a

C4aU1+uv 0 (10.114)

where c4 =
El
pA

(10.115)

and I is the moment of inertia of the beam cross section. For simplicity of
presentation shear deformations will be neglected, but if required, they can be
accounted for without any special difficulties. In addition to the transverse
displacements ur, the beam element undergoing transverse vibrations will have
displacements u,, which in accordance with engineering bending theory can be
calculated from

_ auv auv
ux

ax y = _I aY 1i (10.116)

As in the case of a bar element, the displacements u are expanded in ascending
powers of co, so that

u - LuvJ -
[aouJ

+ o La1vJ +
(02La2v

= (ao + coal + (v2a2 + ...)U = age:"

where U = {U1 U2 Us U4} _ {q1 q2 q3 qa}e'"'t

OD

Hence uu = I UJrageiml = agetwl (10.119)
r=0

FIG. 10.8 Beam element.
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go

and u = I (,0rar,geiwt = avge"
r=0

Substituting Eq. (10.120) into equation of motion (10.114) gives
co co

Ca I U)raryvgeiaG - 0)2 1 COraruge,cut = 0

r=0 r=0

(10.120)

(10.121)

Equating to zero coefficients of the same powers of o) in (10.121), we obtain

a0vIv = 0 (10.122)

a1 " = 0 (10.123)

c4a2Y v = a0 (10.124)

c4a3viv = a1 (10.125)

By solving Eqs. (10.122) to (10.125) it can be demonstrated that

aou = [(1 - 3c,2 + 2E3) ( - X3)1 (3c,2 - Et3)1] (10.126)

al = 0 (10.127)

a2v =
pA J4

[(66 2 - 156 3 + 105 4 - 21 0 + (12 2 - 22 3 + 2W
2,520EI

- 14 0+3')1 (39V - 543+21 6-6') (-9 2+ 13P
- (10.128)

a3j = 0 (10.129)

The matrix ao represents static transverse deflection distribution due to unit
values of U1, ... , U4. The remaining matrices in a are determined from Eq.
(10.116). This leads to

a oz = [6( - 2)rl (-1 + 4 - 3 2)1,7 6(- + 2)rl (2E - 3e)1h7]
(10.130)

altt = 0 (10.131)

a
PA14

[(-132E + 4681;2 - 420 3 + 126 5 - (-24 + 66
2,520EI

- 105V + 84 5 - (-78 + 162E2 - 126 5 + 42 0)77
(18 - 39 2 + 42 5 - (10.132)

a3 = 0 (10.133)
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The strains in the beam element are derived from

aux ally a«e-ax=-ax2y=-Iax2rl
=(b°+cob, (10.134)

Hence from Eqs. (10.126) to (10.129) and (10.134) it follows that

b° _ -/77a"

1 [(-6 + 12,Y) (-4 + 6. )l (6 - 12) (-2 + (10.135)

b, _ -1riaiy = 0 (10.136)

b2 = -h1a2v (10.137)
_A3

[(22 - 156E + 210 2 - 105 ° + (4 - 22 + 70 3 -,f2-0E1

+ (13 - 54E + 1050 - 4U6) (-3 + 13 - 35e4 + 21 b)l]
(10.138)

b3 = -l7)a3y = 0 (10.139)

The next step is to substitute the calculated series for a into Eq. (10.37) to
determine the equivalent mass matrix m. For this case the mass matrix m is
given by

m=MO +Cu2m2+ (10.140)

where
156 Symmetric 36 Symmetric

pAl 221 412 pAl r 2 31 412
MO =

420 54 131 156 + 30 l -36 -31 36

L-131 -312 -22! 412J L 3! -l2 -31 412.

(10.141)

0.729746 Symmetric

(nAl)213 0.153233 / 0.032524812
m2 = x 10-a

El 0.659142 0.1443861 0.729746

-0.1443861
0.317460

-0.031408212 -0.1532331 0.032524812

Symmetric
2(pAl)213 P 0.7936511 0.31746012( )

+ EI 1 -0.317460 0.5952381 0.317460
x 10- 3

-0.5952381 -0.27777812 -0.7936511 0.317460!2
(10.142)



DYNAMICS OF ELASTIC SYSTEMS 287

where r is the radius of gyration of the beam cross section. The first terms in
(10.141) and (10.142) represent the translational inertia of the beam element,
while second terms represent the rotatory inertia.

The stiffness matrix is determined from the calculated series for b and Eq.
(10.38). This leads to

k = ko + aw°k4 (10.143)
12 Symmetric

El 61 41
where k0-Is (10.144)

-12 -61 12

6! 212 61 4!2-
0.364872 Symmetric

13 0.07661621 0.016262412

k4=(PA!)2 El 0.329571 0.0721933/ 0.364872
x 10-2

L-0.07219331 -0.015704112 -0.07661621 0.016262412

(10.145)

Examples illustrating the application of the frequency-dependent mass and
stiffness matrices to cantilever beams have been given by Przemieniecki.275

PROBLEMS

10.1 A uniform bar is subjected to time-varying forces Pi(t) and P2(t) applied at the two
ends (see Fig. 10.9). Derive the analytical solution for the longitudinal displacement u,..

P'(t) uX P2(t)

FIG. 10.9

10.2 Discuss possible methods of extending the concept of frequency-dependent mass and
stiffness matrices to vibrating rectangular plates.



CHAPTER 11
INERTIA PROPERTIES
OF STRUCTURAL
ELEMENTS

This chapter presents detailed derivations of equivalent mass matrices for
discrete elements. The underlying assumption used to derive these matrices
is that the dynamic displacement distribution within each element can be ade-
quately represented by static displacements, Calculations of mass matrices in
datum coordinates, mass matrices for the assembled structure, and condensed
mass matrices are also presented. The equivalent mass matrices based on
static displacement distributions are determined for the following elements:
pin jointed bars, beam elements, triangular and rectangular plates with transla-
tional displacements, solid tetrahedra, solid parallelepipeds, and triangular and
rectangular plates with bending displacements.

11.1 EQUIVALENT MASS MATRICES IN DATUM
COORDINATE SYSTEM

From a computational point of view it is generally preferable to calculate the
equivalent mass matrices for unassembled elements using the local coordinate
system and then to transform these matrices into the datum system selected
for the assembled structure. The element mass matrix is calculated from (see
Sec. 10.5)

M =
J

paTa dV (11.1)
V

where the matrix a must refer to all nodal displacements in local coordinate
system. Thus for thin plates with negligible (zero) transverse stiffness, transverse
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deflections must be considered in forming a. In Chap. 5 we have seen that
the element displacements in local and datum systems of coordinates are
related by the equation

u=au (11.2)

where in the current application A will always be an n x n matrix of direction
cosines, n being the total number of displacements (degrees of freedom) on the
element. From Eq. (11.2) it follows that

ii =au (11.3)

For virtual displacements

8u = a 66 (11.4)

the virtual work of inertia forces must be independent of the chosen frame of
reference, and therefore

867' (-mu) = 8uT (-mu) (11.5)

where in is the equivalent mass matrix in the datum system.
Eqs. (11.3) and (11.4) into (11.5) gives

Introducing

8uT (tft - ),Tmxla = 0

Since both 8u and u are arbitrary, it follows that

(11.6)

in = ATtfi7, (11.7)

Thus the same congruent transformation employed previously for element
stiffnesses is used here to determine the element equivalent mass matrices in
datum coordinates. Note, however, our earlier comments on the size of the
A matrix.

Using Eqs. (11.1) and (11.7), we have

tit =
J

pXTaTaa dV
N

fpaTadV= (11.8)

where a = as (11.9)

represents displacement distribution for unit values of nodal displacements in
the datum system of coordinates. If required, Eq. (11.8) may be used for the
direct calculation of mass matrices in the datum system.

For some elements, the equivalent mass matrix is invariant with respect to
the orientation and position of the coordinate axes. For example, this is true
for pin jointed bars, solid tetrahedra and parallelpipeds, and plate elements
having in-plane stiffness only; however, for elements having bending stiffness,
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such as beam elements, the equivalent mass matrix depends on the selected
frame of reference.

11.2 EQUIVALENT MASS MATRIX FOR
AN ASSEMBLED STRUCTURE

The equivalent mass matrix for the complete structure made up from an
assembly of idealized elements is calculated from the element mass matrices
m(i) using the same procedure as for the calculation of the assembled stiffness
matrix K from the element stiffnesses k"). To determine the stiffness matrix
we considered externally applied forces at the nodal points. To determine the
mass matrix we must consider inertia forces acting on the assembled structure.

The inertia forces acting on each element are given by

SI(i) = -fuluci) (11.10)

where, as before, the superscript i refers to the ith element. Equations (11.10)
can be combined into a single matrix equation

$I = -n-io (11.11)

where SI = {Siw S1(2) S1 ' } (11.12)

fi = fni' ff 2) ... ffi(i) ...} (11.13)

u = {6m u(2) (11.14)

Also in Chap. it was shown that i. . i 3 8 (! 8)

u=AU (11.15)

and hence u = AV (11.16)

In addition to the equivalent mass matrices m, there may be actual con-
centrated masses placed at the nodal points. These masses will be introduced
by the diagonal matrix f, the order of which is equal to the number of node
displacements U. For node points without any concentrated masses the
corresponding positions in m, will be filled with zeros.

Introducing now virtual displacements

Ou = A OU (11.17)

and equating virtual work of inertia forces, we obtain

OUT (-Mit)) = OuT (-r51o) + OUT (-m,i)) (11.18)

where M is the equivalent mass matrix for the assembled structure. Using
now Eqs. (11.16) and (11.17) in (11.18), we have

OUT (M - ATrnA - 0 (11.19)
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and hence M = ATmA + 1n, (11.20)

It is therefore evident that the concentrated masses in m, are simply added to
the corresponding diagonal terms in ATmA. The congruent transformation
ATmA can of course be replaced by the summation procedure, as already
explained in Chap. If in connection with the calculation of the assembled
stiffness matrix K = ATkA. its , s /

11.3 CONDENSED MASS MATRIX133

Because of expediency of effort or lack of reliable eigenvalue computer programs
for large matrices, not all the displacements which were used in the static
analysis are necessarily considered in the dynamic analysis. For example, in
the conventional dynamic analysis of aircraft wing structures only the deflections
normal to the wing midplane are retained. The question then arises how to
formulate the equivalent mass matrix for the reduced number of degrees of
freedom. This can be achieved again through the application of the virtual-
work principle.

The first step is to partition the stiffness matrix K and the displacement
matrix U into

K1 1 K111
K =

.

(11.21)
KI1 K11.11

U=
UI

(11.22)
U,1

The column matrix UI refers to all the displacements we wish to retain as the
degrees of freedom for the dynamic analysis, while UIT denotes all the remaining
displacements, which, although they were used in the static analysis, will not
be employed in formulating a new equivalent mass matrix. The displacements
U11 may be determined from the static equilibrium equation P = KU by assum-
ing that the external forces P11 corresponding to the displacements UIT are all
equal to zero. Hence

U11 = -K1ii1K11.1U1 (11.23)

When we denote the equivalent mass matrix for the displacements U1 by M,
and introduce virtual displacements 6U, it follows immediately from the equiva-
lence of virtual work of the two equivalent mass representations of the con-
tinuous system that

SUIT (-MA) = BUT (-MV)

_ T
TrU

I-[)U1bull ]Ml
J

(11.24)
U11
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Substituting Eq. (11.23) into (11.24), we have

I
bUIT MCUl = bUIT [I -K1.r1K-"II]M

I
IDr (11.25)

-Kn,uKu.r

Hence M, = A,"'MA,

where A, = I
I

1 Kr t.r

(11.26)

(11.27)

The equivalent mass matrix M, will be referred to as the condensed mass
matrix for the reduced number of degrees of freedom. It can be seen that the
condensed mass matrix is obtained in Eq. (11.26) by a congruent transformation
similar to that used in determining M or K.

11.4 PIN-JOINTED BAR

The equivalent mass matrix for a pin jointed bar was derived in Sec. 10.7 as

m= p6 A1 2I3 Ie
(10.81)

I3 2Ig

This matrix is invariant with respect to the selected set of axes. In the special
case when only motion along the length of the bar is considered (see Fig. 11.1)
expression (10.81) reduces to

m=
pAl [2 1

6 1 2

11.5 UNIFORM BEAM

(11.28)

As a local coordinate system we shall select the system shown in Fig. 11.2.
The origin is at node I with the ox axis taken along the length of the beam
and with the oy and oz axes as the principal axes of the beam cross section.
The matrix U for this element consists of twelve displacements, six deflections
and six rotations, that is,

U = {UI U2 U12} (11.29)

Using the engineering theory of bending and torsion and neglecting shear

UI

1_ x

i
U2

FIG. 11.1 Pin jointed bar element.
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U6

293

FIG. 11.2 Beam element in local co-
ordinate system.

deformations, we can easily show that the matrix a in the relationship u = aU
is given by Eq. (11.30).

I

2

3

4

5

6
aT =

u, u u_

r - -_1- 0
.......- ................. -- ----------------------------- --------------------

(i; - V)7? +
0

----------- .............. ....
6( - 0 1 - 32 + U3

-------------- - - ...----0
-(1 - )/ -(1 - )Irl- ---------------

+ U2 X3)1
(........................................... ......................... .. .-

(-I + 4 - 3 2)/71 (e - 22 + 3)/
0

------ --------------------------------

0

12

6(- + 2)77 3e2 - 23
0

0

6(- + S2) C 0 32.. .2 3------------------------ -............ ------ ----------- ------ ------ '
0 -l -tan

---------- ----------------------- --------- - - - - --------------------------
(-2k + 3i;2)1t 0 (e2 - X3)1

.............................. -................... -- ----------- -...... f

(2 - 3 2)h1 (-st2 + st3)/ 0
L..---------------------------------------------- -----°°-----` ................

The nondimensional parameters used in this equation are

1 'l 1 1

(11.30)

where 1 is the length of the beam element. The matrix a in (11.30) can then
be substituted into Eq. (11.1), and integration is performed over the whole
volume of the element. The resulting 12 x 12 equivalent mass matrix is
given by
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where the matrix terms with the moments of inertia I,, or Iz represent rotatory
inertia and the terms with the polar moment of inertia J. represent the torsional
inertia of the element.

The effect of shear deformations on a beam element can be accounted for,
but this naturally leads to rather complicated expressions for the elements in
the equivalent mass matrix. To simplify the presentation we shall consider
transverse deflections and rotation in one plane only, as shown in Fig. 11.3.
With the results of Sec. 5.6 it can be demonstrated that the matrix a for the
beam element is given by

a =

1 2

1 u= 6( - Q)rl :[-1 + 4 -
1 -}- u 1 - 3 s } 2 3 (1 - ) D, [ - 2 3 -{- 3 +

3 4

6(-se + 2)77 (2 -
----------------------------------------t-------------------------- (11.33)

S(1), [-SS + :3 - 1( - E)(Dj

where (D9 = GA ! (11.34)
8

denotes the shear-deformation parameter employed before in Chap. 5. The
first and second rows in (11.33) represent displacements in the x and y direc-
tions, respectively, due to unit values of U. Substitution of Eq. (11.33) into
(11.1) and subsequent integration yields the required mass matrix for the beam
element in Fig. 11.3. This matrix is given by

FIG. 11.3 Beam element (transverse deflections
and rotations only).
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where an additional symbol r is introduced to represent the radius of gyration
of the beam cross section. The first term in (11.35) represents the trans-
lational mass inertia, while the second term represents the rotary inertia of
the beam. Equation (11.35) was first derived independently by Archer°-7 and
by McCalley.

If the rotatory-inertia and shear deformation effects are neglected, Eq. (11.35)
reduces to

156 221 54 -131

pAl 221 412 131 -312
m

420 54 13/ 156 -221

-131 -312 -221 412

11.6 TRIANGULAR PLATE WITH
TRANSLATIONAL DISPLACEMENTS

(11.36)

The in-plane displacement relationship for a triangular plate used in Chap. 5
for u., (or uv) measured in local coordinate system is given by

r-X2) x-xa) Y21(x- ra2(-1 y - lU (11.37)tix -=
2A yl)ya)-

x21+(y
1)

- xsa(y - Y2):! - y+alxal(y -12a

where U = {U1 U2 Us} (11.38)

represents the node displacements in either the x or in y directions. Figure
11.4 shows the displacements U all measured in the x direction. Thus the
required matrix a can be obtained from (11.37), but if we had used it directly
in determining the equivalent mass matrix, the resulting integration over the
triangular area would have been extremely unwieldy. It is therefore preferable
to introduce the triangular coordinates and 77 shown in Fig. 11.5. These
nonorthogonal coordinates are related to the rectangular coordinates x and y

Fra. 11.4 Triangular plate element.
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no. 11.5 Triangular coordinate system.

by means of the relationships

X = X1 + (x31 - 9ix32) Y = y1 + (y31 -'7y32) (11.39)

After introducing (11.39) into (11.37) it follows immediately that

a = [(1 - ) 27 (1 -,)] (11.40)

Noting now that the jacobian J(x,y) for the coordinate transformation is given
by

ax ay ax ay
J(xy)=a a7-a7la

= -(x31 - rfx32)y32S + X3231 -'Y32)
= 2A123

and then substituting (11.40) into (11.1), we can easily demonstrate that

m = Ptf1fla7a IJ(x,y)I dd di

(11.41)

0 0

2 1 1

= pA123t 1
1 2 1 (11.42)

12

1 1 2

where t is the thickness of the plate. The above matrix can be used either for
:rx or for u displacements. Furthermore, it can also be used for the normal
displacements, that is, uz, but in general if such a mass matrix is used when
there is a pronounced bending deformation, accurate results should not be
expected since a is based here on linear displacements between the nodal points.
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If displacements in all directions are considered, the equivalent mass matrix
becomes

m 0 0

mtrlnngle = 0 m 0
0 0 m

(11.43)

where contrary to our previous convention the displacements are grouped in
sets of three displacements in the x, y, and z directions, respectively. Matrix
(11.43) can be used for triangular plates undergoing essentially translational
displacements, as in the case of a triangular element in a built-up structure.

11.7 RECTANGULAR PLATE WITH
TRANSLATIONAL DISPLACEMENTS

For a rectangular plate (see Fig. 11.6) the matrix a may be taken as

1 2 3 4

a = [(1 - )(1 - r!) (1 - 077 .i (1 - 77)] (11.44)

where and 17 represent now nondimensional rectangular coordinates. Here
again we shall calculate the mass matrix for one direction only. Thus for the
displacements shown in Fig. 11.6, that is, x direction,

m= p V
J0

" fo aTa dd di7

4 2 1 2

pV 2 4 2 1

(11.45)
36 1 2 4 2

2 1 2 4

Identical mass matrices are obtained for they and z directions.

O U3

b

Ut
i I

U4

a
FIG. 11.6 Rectangular plate element.
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11.8 SOLID TETRAHEDRON

To find the equivalent mass matrix we shall use the tetrahedral coordinates
, 77, i; defined in Fig. 11.7. The tetrahedral coordinates are related to the
rectangular coordinates by means of the relationships

x = C4 - Sx41 + tSSXS1 - ts77CX32

Y =y4 - yCy41 + S-qSy32 (11.46)

Z = (1 - S)Z4

where for convenience the origin of the local coordinate system is placed at
node 1 and the tetrahedron side 1,2,3 lies in the xy plane. Using Eqs. (11.46)
it can be demonstrated that for a linear distribution of displacements within
the tetrahedron the matrix a in tetrahedral coordinates is given by

1 2 3 4

a = [(1 - ) ,q (l - ?!) (1 - )l (11.47)

where the column numbers refer to the displacements shown in Fig. 11.8.

FIG. 11.7 Tetrahedral coordinate system.
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FIG. 11.8 Solid tetrahedron.

U2

The jacobian J(x,y,z) for the coordinate transformation (11.46) is given by

ax ax ax
a an K

J(x,y,z) = ay ay a = (11.48)

az az az

where V is the volume of the element. Using, therefore, Eqs. (11.47) and
(11.48) in (11.1), we have
m = p 0, ri rlaTa

I J(x,y,z)I dd do dr;
0J0 0

2 1 1 1

pV 1 2 1 1

(11.49)
20 1 1 2 1

1 1 1 2

11.9 SOLID PARALLELEPIPED
For a solid parallelepiped with linearly varying edge displacements the matrix a
is given by

1 2 3 4

a = [(1 - )(1 - n)(1 - 0 (1 - )77(1 - 0 770 - i;) (1 - i)(1 --
5 6 7 8

(1 - )(1 - ii) (1 - )r1 n (1 - r1)f] (11.50)

where a 9]=b C (11.51)

represent nondimensional coordinates measured from node 1, as shown in
Fig. 1 1.9, and a, b, and c are the dimensions of the parallelepiped. The column
numbers I to 8 refer here to the eight displacements for some typical direction,
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FIG. 11.9 Parallelepiped.

F

that is, x direction as indicated in Fig. 11.9. Substituting Eq. (11.50) into
(11.1), we obtain the mass matrix in the form

8

4 8 Symmetric

2 4 8

pV 4 2 4 8
(11.52)

216 4 2 1 2 8

2 4 2 1 4 8

1 2 4 2 2 4 8

2 1 2 4 4 2 4 8

where V = abc denotes the element volume.

11.10 TRIANGULAR PLATE WITH BENDING DISPLACEMENTS

Many different displacement distributions for triangular plate elements sub-
jected to bending have been proposed in the technical literature, all of which
could be employed to derive the equivalent mass matrix for this element. In
order to illustrate the general method we shall use the displacement ua normal
to the middle plane of the plate given by Eq. (5.234), which may also be expressed
in matrix form as

F C1_]

C2

uz = [1 x Y x2 xy y2 X3
xy2 + x2y y3]

Lc4J
= do (11.53)
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U8

U2

Fio. 11.10 Triangular plate element with bending displacements.

where c = {c1 c2 c9} (11.54)

and the matrix d has coefficients represented by functions of x and y. The
directions of the coordinate axes are shown in Fig. 11.10. Although the sub-
sequent analysis is carried out for the specific displacement distribution given
by Eq. (11.53), the method is sufficiently general to allow the use of other
functions in the matrix d.

Using the notation of Sec. 5.11, we can determine the unknown constants
c1,...,c9from
U = Cc (11.55)

Hence C = C-1U (11.56)

and from (11.53)

u:t = dC-1U = azU (11.57)

where aZ = dC-1 (11.58)

The displacements it,, and u (see Fig. 11.10), caused by the rotations of normals
to the middle plane, are calculated from

ad
Ux

ax
z

ax
C-1zU = a,U (11.59)

au; ad
uy = - z = - C-1zU

= auU (11.60)
ay ay

Next, Eqs. (11.57), (11.59), and (11.60) are collected into a single matrix equation

U. ax

u= uy = a U=aU (11.61)

ux a.
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which can be substituted directly into (1 1.1). This leads to

m =J paxTay dV +J dV +5pasTa2 dV (11.62)
v v v

where the first and second terms represent the rotary inertia, while the third
term represents the translational inertia of the plate. However, for most
practical calculation, the rotary-inertia effects are usually neglected, so that

m =f!a,21
aZ dV (11.62a)

Substituting Eq. (11.58) into (11.62a), we have

m =J p(C-')TdTdC-' dV
n

= pt(C-')T f f dTd dx dy C-' 11.63)

As in Sec. 5.11, the matrix C and its inverse are evaluated numerically, while the
integral of the matrix product dTd, using d from Eq. (11.53), is determined
from

f fdVddxdy

F

1

X

= $1

Xe

y xy y'
X2 x' X!y x4 Symmetric

xy X'y xy' x3y x'y'

ys
xya

ya x'y' xy3 y4

x7 x4 x3y xa x4y Xaya Xe

xyx x'y' xya
x'y' x2/

xy, x4y' (xya

+ x$y + x'y + xsy' + x4y + x'y' + x'y' + xa)' + x'y)'

y3 Xy3 )r4 X'y° Xy4 y' x'y'

dx dy

(11.64)

Evaluation of coefficients in f f dTd dx dy involves integration of

I(xm,y") = f fxmyn dx dy (11.65)

over the surface of the triangle. The integration in cartesian coordinates is
unwieldy, and therefore it is preferable to introduce the triangular coordinate
system E and 77 and also to select the oy axis to coincide with the edge 1,2 of
the triangle. In addition, the origin for the cartesian coordinate system will
be taken at vertex 1, as shown in Fig. 11.11. For the selected coordinate
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FIG. 11.11 Triangular coordinate system used

cy to evaluate I(x"',),") integrals.
(x31Y3)

v=1- % /'=O

(0,0)

system we then have (see Sec. 11.6)

x = (1 - Ox3 (11.66)

y = [(1 -'i)ys +'1Y21 (11.67)

while the jacobian J(x,y) of the transformation is given by

J(x,y) = x3y2 (11.68)

With the triangular coordinates the integration of (11.65) is relatively simple,
since now

lxmy" I J(xy) 14 ddI (xm, y") =
Jo

1Jo

((
1 I l m+"+1(1 - 77).'[(l - 77)y3 + ijy21nx3' +'y2 d dyj (11.69)

0

which involves only polynomials in and ij, and the range of integration is
from 0 to 1.

11.11 RECTANGULAR PLATE WITH
BENDING DISPLACEMENTS2711

Two different displacement distributions ut were used in Sec. 5.12 to determine
stiffness properties of rectangular plates in bending. The first distribution is
such that the boundary deflections on adjacent plate elements are compatible;
however, rotations of the element edges on a common boundary are not com-
patible, and consequently discontinuities in slopes exist across the boundaries.
In the second distribution, both the deflection and slope compatibility on
adjacent elements are ensured. The same two distributions will be used to
derive the equivalent mass matrices for rectangular elements.

As in the case of the triangular plate element, only the translational mass
matrix will be determined. The displacements at the node points on the
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rectangular plate are shown in Fig. 11.12. For noncompatible displacements
the matrix az from

u, = azU (11.70)

where U = {U1 U2 U18} (11.71)

is given by Eq. (5.263). Substituting (5.263) into (11.1) and performing
integration over the whole volume of the rectangle, we obtain the mass matrix
based on noncompatible displacements. This matrix is given by Eq. (11.72).

FIG. 11.12 Rectangular plate element with bending displacements.



1
24

,1
78

2
3
,
2
2
7
b

5
6
0
b
2

3
-
3
,
2
2
7
a

-
4
4
1
a
b

5
6
0
a
2

4
8,

58
2

1,
91

8b
-1

,3
93

a
24

,1
78

5
-1

,9
18

b
-4

20
b2

29
4a

b
-3

,2
27

b
56

0b
2

S
ym

m
et

ric

P
ab

6
-1

,3
93

a
-2

94
ab

28
0a

2
-3

,2
27

a
44

1a
b

56
0a

2
M

17
6,

40
0-

7
2,

75
8

81
2b

-8
12

a
8,

58
2

-1
,3

93
b

-1
,9

18
a

24
,1

78

8
-
8
1
2
6

-
2
1
0
b
2

1
9
6
a
b

-
 
1
,
3
9
3
b

2
8
0
b
2

2
9
4
a
b

-
3
,
2
2
7
b

5
6
0
b
2

9
8
1
2
a

1
9
6
a
b

-
2
1
0
a
2

1
,
9
1
8
a

-
2
9
4
a
b

-
4
2
0
a
2

3
,
2
2
7
a

-
4
4
1
a
b

5
6
0
a
2

10
8,

58
2

1,
39

3b
-1

,9
18

a
2,

75
8

-8
12

6
-8

12
a

8,
58

2
-1

,9
18

b
1,

39
3a

24
,1

78

1
1

1
,
3
9
3
6

2
8
0
b
2

-
2
9
4
a
b

8
1
2
b

-
2
1
0
6
$

-
1
9
6
a
b

1
,
9
1
8
b

-
4
2
0
b
2

2
9
4
a
b

3
,
2
2
7
b

5
6
0
6
°

1
2

1
,
9
1
8
a

2
9
4
a
b

-
4
2
0
a
2

8
1
2
a

-
1
9
6
a
b

-
2
1
0
a
2

1
,
3
9
3
a

-
2
9
4
a
b

2
8
0
a
2

3
,
2
2
7
a

4
4
1
a
b

5
6
O
a
2

1
2

3
4

5
6

7
8

9
10

11
12 (1

1.
72

)



1
24

,3
36

2
3
,
4
3
2
6

6
2
4
6
=

3
-
3
,
4
3
2
a

-
4
8
4
a
b

6
2
4
a
2

4
8,

42
4

2,
02

8b
-1

,1
88

a
24

,3
36

5
-2

,0
28

6
-4

68
b2

28
6a

b
-3

,4
32

b
62

46
2

S
ym

m
et

ric

pa
b

6
-1

,1
88

a
-2

86
ab

21
6a

2
-3

,4
32

a
48

4a
b

62
4a

2
m
=

17
6,

40
0 

7
2,

91
6

70
26

-7
02

a
8,

42
4

-1
,1

88
b

-2
,0

28
a

24
,3

36

8
-
7
0
2
6

-
1
6
2
b
2

1
6
9
a
b

-
1
,
1
8
8
6

2
1
6
b
2

2
8
6
a
b

-
3
,
4
3
2
b

6
2
4
6
4

9
7
0
2
a

1
6
9
a
b

-
1
6
2
a
2

2
,
0
2
8
a

-
2
8
6
a
b

-
4
6
8
a
2

3
,
4
3
2
a

-
4
8
4
a
b

6
2
4
a
2

10
8,

42
4

1,
18

86
-2

,0
28

a
2,

91
6

-7
02

6
-7

02
a

8,
42

4
-2

,0
28

b
1,

18
8a

24
,3

36

1
1

1
,
1
8
8
b

2
1
6
6
4

-
2
8
6
a
b

7
0
2
6

-
 
1
6
2
b
4

-
1
6
9
a
b

2
,
0
2
8
b

-
4
6
8
b
2

2
8
6
a
b

3
,
4
3
2
6

6
2
4
6
2

1
2

2
,
0
2
8
a

2
8
6
a
b

-
4
6
8
a
2

7
0
2
a

-
1
6
9
a
b

-
1
6
2
a
2

1
,
1
8
8
a

-
2
8
6
a
b

2
1
6
a
2

3
,
4
3
2
a

4
8
4
a
b

6
2
4
a
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2 (
1
1
.
7
3
)



INERTIA PROPERTIES OF STRUCTURAL ELEMENTS 309

Similarly, for compatible displacements the matrix a= is given by Eq. (5.269),
which leads to the mass matrix in Eq. (10.73). For comparison purposes
both (11.72) and (11.73) are presented with a common denominator.

11.12 LUMPED-MASS REPRESENTATION

The simplest form of mathematical model for inertia properties of structural
elements is the lumped-mass representation. In this idealization concentrated
masses are placed at the node points in the directions of the assumed element
degrees of freedom. These masses refer to translational and rotational inertia
of the element. They are calculated by assuming that the material within the
mean locations on either side of the specified displacement behaves like a rigid
body while the remainder of the element does not participate in the motion.
This assumption therefore excludes dynamic coupling between the element
displacements, and the resulting element mass matrix is purely diagonal.
Hence for an element with n degrees of freedom we have that
m = [m1 n12 .. , mi .. , m 1 (11.74)

where ni represents the lumped mass for the direction of the displacement U.
For example, the lumped-mass representation for a bar element leads to

m =
pAl 1 0- (11.75)

2 0 1

It has been demonstrated that for a given number of degrees of freedom
the lumped-mass representation is less accurate than the equivalent mass
matrices derived from Eq. (11.1); however, in many practical applications we
may still prefer to use the lumped-mass matrices because of the significant
computational advantages derived from the fact that such matrices are diagonal.

PROBLEMS

11.1 Calculate the condensed mass matrix for displacements 3 and 5 in Prob. 6.4 (see Fig.
6.13).

11.2 Determine the equivalent mass matrix for a bar element with cross-sectional area
varying linearly from A, to As. The bar length is /, and its density is p.

11.3 Determine the equivalent mass matrix for the curved-beam element shown in Fig.
6.14. The rotary-inertia and shear-deformation effects are to be neglected.



CHAPTER 12
VIBRATIONS OF
ELASTIC SYSTEMS

In this chapter the general theory is presented for the analysis of small harmonic
oscillations of elastic systems having a finite number of degrees of freedom.
The harmonic oscillations may be induced in an elastic system by imposing
properly selected initial displacements and then releasing these constraints,
thereby causing the system to go into an oscillatory motion. This oscillatory
motion is a characteristic property of the system, and it depends on the mass and
stiffness distribution. In the absence of any damping forces, e.g., viscous
forces proportional to velocities, the oscillatory motion will continue indefinitely,
with the amplitudes of oscillations depending on the initially imposed displace-
ments; however, if damping is present, the amplitudes will decay progressively,
and if the amount of damping exceeds a certain critical value, the oscillatory
character of motion will cease altogether. The oscillatory motion occurs at
certain frequencies, and it follows well-defined deformation patterns, described
as the characteristic modes. The study of such free vibrations is an important
prerequisite for all dynamic-response calculations for elastic systems. In this
chapter the vibration analysis is developed for both the stiffness and flexibility
formulations. The orthogonality property of the vibration modes is also dis-
cussed. Several numerical examples are included to illustrate the general
theory.

12.1 VIBRATION ANALYSIS BASED ON STIFFNESS

The equations of motion for an elastic system with a finite number of degrees of
freedom were derived in Chap. 10 through the application of the virtual-work
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principle for dynamic loading. These equations are expressed in matrix
notation as

MU+KU=P (12.1)

where P is a column matrix of equivalent forces calculated in accordance with
Eq. (10.36). For aeronautical applications

P=Pd+Pa (12.2)

where P,, represents the disturbing forces and Pa represents the aerodynamic
forces. The disturbing forces P, may be due to a variety of causes; on aircraft
structures they may represent forces on control surfaces, gust loads, landing
loads, etc., while on civil engineering structures they may represent loads due to
wind gusts, earthquakes, or forced vibrations. In general, these disturbing
forces are represented by some specified functions of time. The aerodynamic
loads Pa, which are of great importance in aeroelastic calculations for aerospace
structures, are normally expressed by the matrix equation

P. = Ant) + B,;10 +

C and are
of and the frequency.

In real structures we have always some energy dissipation present. For this
reason damping forces must also be introduced into our discrete-element system.
When the damping forces are proportional to the velocity, the damping is
described as viscous. For such cases the equation of motion is written as

MU+CU+KU =P (12.4)

where C is the damping matrix. In addition to viscous damping other forms of
damping mechanism are possible, e.g., structural damping.

UNCONSTRAINED STRUCTURE

We shall consider next a completely unconstrained (free) structure undergoing
free oscillations. For this case P,1 = 0, and P. = 0, and if we assume that the
system is undamped, that is, C = 0, the equation of motion becomes

MU+KU=0 (12.5)

Since the free oscillations are harmonic, the displacements U can be written as

U = geLo)i (12.6)

where q is a column matrix of the amplitudes of the displacements U, w is the
circular frequency of oscillations, and t is the time. Using Eq. (12.6) in (12.5)
and then canceling the common factor e'°'', we obtain

(-(u2M + K)q = 0 (12.7)
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which may be regarded as the equation of motion for an undamped freely
oscillating system.

Equation (12.7) has a nonzero solution for q provided

j-w2M + KI = 0 (12.8)

This last equation is the so-called characteristic equation from which the natural
frequencies of free oscillations can be calculated. The determinant in Eq.
(12.8), when expanded, yields a polynomial of nth degree in w2, the roots of
which give the natural frequencies [eigenvalues of Eq. (12.7)]. Only for these
natural frequencies will there be a nonzero solution obtained for q in (12.7).
The number of frequencies thus obtained is equal to the number of nonzero mass
coefficients on the principal diagonal of the equivalent mass matrix M. This
number includes also zero frequencies for the rigid-body degrees of freedom.
For the general three-dimensional case there will be six such zero frequencies.
The explanation why co = 0 is a solution of Eq. (12.5) is simple. From Eq.
(12.6) for co = 0, U = q and CJ = 0. Therefore

Kgrigid body = 0 (12.9)

which is obviously satisfied by virtue of the fact that rigid-body displacements
alone do not produce any elastic restoring forces in the structure.

For a given value of w2 determined from the characteristic equation (12.8), we
can utilize Eq. (12.7) to find the amplitudes of q. Because Eq. (12.7) represents
a homogeneous set of linear equations, only the relative values or ratios of q can
be obtained.

Returning now to Eq. (12.8), it is apparent that the roots w2 (eigenvalues) can
be found directly only if the size of the determinant is not too large. For most
problems, various numerical methods employing Eq. (12.7) are used, and they
have the added advantage of producing also the "amplitudes" q (eigenmodes)
for a given frequency. For details of these methods standard texts on matrix
algebra should be consulted. For some methods the form of Eq. (12.7) may not
be suitable, and we have first to premultiply the equation by M-', so that, after
changing signs,

(0I - M-'K)q = 0 (12.10)

which is now of the standard form for eigenvalue calculations. It should be
noted that a similar transformation, where Eq. (12.7) is postmultiplied by K-'/w2,
is not possible because the stiffness matrix K for an unconstrained structure is
singular.

I n some practical applications some of the masses in M may be zero, and there-
fore the matrix M is singular. This occurs if some or all structural mass mat-
rices are neglected and only actual concentrated masses associated with some
degrees of freedom are considered. For such cases the matrices M, K, and q can
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be partitioned as follows:

MC
r

0
M = O

0]
(12.11)

K = [K. Kav]
(12.12)

Kvx Kvv

[qx]
q= (12.13)

where subscripts x refer to the direction of displacements in which inertia forces
are present and y refers to the directions in which there are no inertia forces.
Using Eqs. (12.11) to (12.13) in (12.7), we can show that

((021 - M,-1Ke)gx = 0 (12.14)

where K. = K. - 1Kvx

represents the condensed stiffness matrix for the directions x.

(12.15)

The eigenmodes calculated from Eq. (12.10) or (12.14) can be checked by the
equations of equilibrium. Since for free oscillations the inertia forces P1 are
the only forces acting on the structure, they must be in equilibrium with them-
selves. Hence

r
P,,, + TTPcu = 0 (12.16)

where P;,, represents the inertia forces in the directions of the rigid frame of
reference and P, represents all the remaining inertia forces. Equation (12.16)
can be written as

Ao7'P= = 0 (12.17)
1I

where A0 =
[TI

(12.18)

and P1 = LPtJ -Me (12.19)

Using Eqs. (12.6), (12.17), and (12.19) and assuming that co 0, we have

AoTMq = 0 (12.20)

Equation (12.20) can therefore be used as an independent check on eigenmodes
q other than those corresponding to the rigid-body degrees of freedom. The
rigid-body modes can be checked using Eq. (12.9).



THEORY OF MATRIX STRUCTURAL ANALYSIS 314

CONSTRAINED STRUCTURE

If the structure is constrained in such a way that all rigid-body degrees of.
freedom are excluded, i.e., if the structure is supported in a statically determinate
manner, the corresponding stiffness matrix will be nonsingular. Such a stiffness
matrix is obtained from the unconstrained-structure stiffness matrix K by
eliminating rows and columns representing the zero displacements assigned to
suppress the rigid-body degrees of freedom. Denoting this new reduced matrix
by Kr and the corresponding mass matrix by Mr, we can write Eq. (12.7) as

(-W2Mr + K,-)q, = 0 (12.21)

where q,. refers to the unconstrained degrees of freedom. Now since IKrI 0 0,
we may premultiply Eq. (12.21) by (1/w2)Kr' to obtain

(
12

I - Kr-1M')qr = 0 (12.22)

or

where D = Kr1Mr

(12.22a)

(12.23)

is usually referred to as the dynamical matrix. The characteristic equation for
frequencies co for constrained vibrations is then

g II1I-D0 (12.24)
w

It should be noted that some numerical methods applied to Eq. (12.22a) yield
first the lowest value of to (the highest value of l /w). This has practical ad-
vantages if only a few lowest frequencies and the corresponding modes are
required.

OVERCONSTRAINED STRUCTURE

If the structure is supported in a statically indeterminate manner (with redundant
supports), it may be described as being overconstrained. The characteristic
frequencies and modes can still be determined for such structures from Eq.
(12.22a) provided the additional rows and columns representing redundant
constraints in K, and Mr are eliminated.

The three types of vibrations on structures are illustrated in Fig. 12.1 for a
simple beam vibrating in the transverse direction. For unconstrained vibrations
the beam is oscillating freely, as would be the case of an aircraft wing in flight
(see Fig. 12.la). For constrained vibrations the rigid-body degrees of freedom
(translation and rotation) are suppressed. This can be achieved by supporting
the two end points on wedges (see Fig. 12. l b). There are also other combinations
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(a)

77 e
(b)

(C)

"K

FIG. 12.1 Examples of vibrations on un-
constrained, constrained, and overconstrain-
ed structures. (a) Unconstrained (free);
(b) constrained; statically determinate reac-
tions; (c) ovcrconstrained; statically in-
determinate reactions.

of support conditions possible for constrained vibrations, e.g., cantilever beams.
To illustrate overconstrained vibrations we may take the beam on three supports
(see Fig. 12.1c). Naturally many other combinations of support conditions are
also possible, e.g., propped cantilever beams.

12.2 PROPERTIES OF THE EIGENMODES:
ORTHOGONALITY RELATIONS

The modes q obtained from Eq. (12.7) can be separated into the rigid-body
modes po and normal modes of vibration (elastic eigenmodes) pe so that

Po = IPi Ps
. ' ' Pw1 (12.25)

and P. = IPw+i Pw+s Pw+m1 (12.26)

where Iv represents the number of unconstrained rigid-body degrees of freedom
and m represents the number of elastic eigenmodes.

If ws 0 0, Eq. (12.7) can be rewritten as

(_'K - M)q = 0 (12.27)

Substitution of the elastic eigenmodes from (12.26) into (12.27) leads to

MPw+t = 0

w;+sKPw+s - MP,+s = 0 (12.28)

_s
ww+rKPw+m - MPw+m =
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which can be combined into a single matrix equation

Kp,92-2 - Mp, = 0 (12.29)

where n-2 = (w;? 1 W ?2 w.,, (12.30)

Premultiplying Eq. (12.29) by p, T, we obtain

PCTKp,SL-2 - 0 (12.31)

or .X-,n-2 = ,ft, (12.31 a)

where X, = p,IKp, (12.32)

represents the generalized stiffness matrix and

.?1, = PaTMPC (12.33)

represents the generalized mass matrix for the elastic eigenmodes. Since K and
M are symmetric matrices, it follows from (12.32) and (12.33) that both V, and
dl, are also symmetric.

Writing Eq. (12.31a) symbolically as

AD = S (12.34)

where both A and S are symmetric and D is diagonal, we can find the elements of
S, that is, ,, from

gyrm

sil = G airdrl = aildli (12.35)
r=1

and
In

sli = I alydri = alidii (12.36)
r=1

Since sio = sli (12.37)

we must have that

a d= ac1
(12.38)iilii5 11

which is true only if either A, that is, X,, is diagonal or D, that is, 61-2, is a

scalar matrix. Since D is not a scalar matrix, it follows that the matrix A,
that is, X and hence S, that is, £ must be diagonal. Hence we can note
from Eqs. (12.32) and (12.33) that the elastic eigenmodes p, are orthogonal with
respect to either the stiffness matrix K or the mass matrix M.

It is interesting to examine Eq. (12.32). When this equation is written as

2Pr"KPn = JX, (12.39)

it is clear that Kp, represents generalized elastic forces for the modes p and
ip,TKp,, represents work done by these generalized forces. Since X, is a
diagonal matrix, Eq. (12.39) can be interpreted as the statement that "work of
the generalized elastic forces in one mode acting over the displacements in
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another mode is equal to zero"; only when the generalized forces are acting over
the displacements in their own mode is work not equal to zero.

We can now return to the rigid-body modes po. These modes can be con-
veniently taken as

I
Po = ,I, = A0 (12.40)

Using Eq. (12.40) in (12.20) and noting that the equilibrium conditions must be
satisfied for q = p,o+l, Pw+a)

- , p,,+,,,, we obtain

PoTMpo = 0 (12.41)

Equation (12.41) may be interpreted as an orthogonality condition between the
rigid-body modes po and the eigenmodes pe with respect to the mass matrix M.

For the subsequent analysis the matrix product

P07,MP0 = mo (12.42)

will be introduced. The matrix .I1 is symmetric since M is symmetric, and it
represents the generalized inertia matrix of the rigid structure. It can be made
into a diagonal matrix with the proper choice of the rigid frame of reference.
If the displacements in po refer to the principal axes of inertia at the center of
gravity, the modes po are mutually orthogonal, and

lL0 = [M M M I. I,, IJ (12.43)

where M is the total mass and Ix, I,,, and Iz are the moments of inertia about the
principal axes.

Combining now Eqs. (12.33), (12.41), and (12.42) into one equation, we have

PTMp = ld (12.44)

where P = [Po Pe] (12.45)

and ( = [J(0 1 (12.46)

Equation (12.44) represents the orthogonality condition for all rigid-body modes
and elastic eigenmodes on an unconstrained structure.

For constrained structures all orthogonality relations are still valid provided
po = 0 is used, which implies that no rigid-body degrees of freedom are allowed.
For overconsirained structures po = 0, and the number of degrees of freedom in
p6 is reduced, depending on the degree of overconstraint (number of redundant
reactions).
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12.3 VIBRATION ANALYSIS BASED ON FLEXIBILITY

UNCONSTRAINED STRUCTURE

Using Eq. (12.19), we can express the inertia forces on the structure as

rj - [Muw m..] Lid
(12.47)

where the partitioning of the mass matrix M into submatrices is made to
correspond to the partitioned inertia-force matrix (12.19) and the displacement
matrix

U = CwI
U

The displacements u can be related to w through the equation

(12.48)

u=r+Tw (12.49)

where r represents the displacements u relative to the fixed frame of reference and
T is a transformation matrix giving the components of u due to the rigid-body
displacements w. The relative displacements r are determined from

r = .FPtu (12.50)

where F represents the flexibility matrix calculated for the forces Pt,, with
w = 0 as the fixed frame of reference.

Using Eqs. (12.47), (12.49), and (12.50), we have

u - Tw = -{- (12.51)

which may be regarded as the equation of motion of the vibrating structure.
Since the motion is harmonic, the displacements w and u may be expressed as

w = gwetwt (12.52)

and u = qeiwt (12.53)

where q,0 and qu are the column matrices of the displacement amplitudes.
Substituting now Eqs. (12.52) and (12.53) intd the equation of motion (12.51) and
then canceling the exponential factors e'Wt, we obtain

qjj - Tgtu = Mauqu) (12.54)

To determine q,. in terms of q we use the equation of equilibrium

Pi,,, + TTPf = 0 (12.16)
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in conjunction with Eqs. (12.47), (12.52), and (12.53). Thus substituting Eq.
(12.47) into (12.16), we have

Mteww + M,ouii + TTM,,0i, + T"M,,,,u = 0 (12.55)

which is subsequently modified by using Eqs. (12.52) and (12.53) to yield
finally

(M.. + TTM,.,Jga + (Mwu + TTMuu)qu = 0 (12.56)

Hence, solving Eq. (12.56) for q,,, we obtain

qw = -(M.. + TTM,.,n)-1(Mwu + TTMua)qu
= Toqu (12.57)

where To = -(M,0 + TTMuw)-1(M,,,,. + TTMuu) (12.58)

Substituting now Eq. (12.57) into (12.54), we obtain the equation

q,. - TToqu = w2FMuwToqu + WQ. 'Muuqu (12.59)

which can be rearranged into

Cwt I - (I - TTo)-1F(M,.,. + M.To)]qu = 0 (12.60)

or (_jI_D)qu=o (12.61)

where D = (I - TTo)-1.f (M,,,. + M,.,,To) (12.62)

is the dynamical matrix for the vibrating system. The condition for nonzero
values for q becomes therefore

I12I-D0 (12.63)

Equation (12.63) is the characteristic equation for the frequencies w based on the
flexibility of the structural system.

Flexibility formulation of the vibration analysis does not allow for the direct
determination of the rigid-body modes; however, this is not a serious restriction,
since these modes can normally be obtained by inspection for simple structures,
or, alternatively, they can be obtained formally from Eq. (12.40).

CONSTRAINED STRUCTURE

The problem of determining the characteristic frequencies and modes for a
constrained structure is considerably easier than for a free structure. Noting
that the displacements and accelerations of the fixed frame of reference are equal
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to zero for a constrained structure, that is,

w=w=0 (12.64)

it follows immediately from Eq. (12.51) that

u = - M,,,,ii (12.65)

Substituting

u = q,.e;wt (12.66)

into Eq. (12.65) and canceling the exponential factor etot, we have

FMuu)qu = 0 (12.67)

Hence the characteristic equation for the frequencies w becomes

wQ I - 5r M,,,, 0 (12.68)

It should be noted here that Eq. (12.67) is identical with Eq. (12.22) since

3 = Kr- 1 (12.69)

and M,,,, = Mr (12.70)

OVERCONSTRAINED STRUCTURE

Here again w = 0, and also some of the displacement u will be equal to zero.
Equations (12.67) and (12.68) are still applicable to the case of overconstrained
structure provided the appropriate flexibility and mass matrices are used. Thus
the size of matrices .F and Mutt will be reduced depending on the number of
constraints for u.

12.4 VIBRATION OF DAMPED STRUCTURAL SYSTEMS

The equation of motion for a structural system with viscous damping and with-
out any externally applied forces is expressed by [see Eq. (12.4)]

MU + CU + KU = 0 (12.71)

The solution to this equation may be assumed as

U = gent (12.72)

where p is complex. Substituting (12.72) into (12.71), we have

(p2M +pC + K)q = 0 (12.73)
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which has nonzero solutions for q provided

Ip2M+pC+KI=O (12.74)

For a multi-degree-of-freedom system Eqs. (12.73) and (12.74) are incon-
venient to handle. A method has been proposed by Duncan which reduces
these equations to a standard form. In this method we combine the identity

MO-MU=0
with Eq. (12.71) to get

o

[M C

Mi

[UJ + [ 0 K] CUJ = [0]

Equation (12.76) can now be rewritten as

a0;./ + a* = 0
0 M

where .sd =
C ]

-M 0a-[0
K]

611= [U] and a11= [UJ

Now if we let

'W = vep°

the equation of motion (12.76a) can be transformed into

(pod + R)v = 0

(12.75)

(12.76)

(12.76a)

(12.77)

(12.78)

(12.79)

(12.80)

(12.81)

This last equation is now of a standard form for which many eigenvalue com-
puter programs are available. The only penalty we incur for this simplification
is that the size of all matrices is doubled.

12.5 CRITICAL DAMPING

We shall consider next a single-degree-of-freedom system, for which the equation
of motion is

MO + CO + KU = 0 (12.82)

we shall assume that p in (12.72) is given by

p = -ic + ia)" (12.83)
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which when substituted into (12.74) leads to

(u2M - wd2M - ,uC + K) + i(w,cC - 2uw,cM) = 0 (12.84)

Hence, equating to zero the imaginary part of (12.84), we have that

_ C
2M (12.85)

Similarly, after equating to zero the real part of (12.84) and then using (12.85), it
follows that the damped circular frequency co, is obtained from

wd2 = M (A2M - µC + K)

a_K C)
M 2M

z
w2 )2 (12.86)

where wQ =
M (12.87)

is the square of the circular frequency for the undamped system (C = 0).
When the damped circular frequency wJ = 0, the oscillatory character of the

solution ceases, and the system is said to be critically damped. For this case the
damping coefficient must be given by

Cent = 2VKM = 2Mw (12.88)

For w,,2 < 0, that is, when C > 2Mw, the system is overdamped, having a
nonoscillatory solution for the displacement; however, for most structural
problems this condition does not occur.

The concept of critical damping is very useful in dynamic-response calculations,
since it is easier to specify the amount of damping as a certain percentage of
critical than it is to arrive at the numerical values of the damping coefficients in
the matrix C. Details of this method are given in Chap. 13.

12.6 LONGITUDINAL VIBRATIONS OF AN UNCONSTRAINED BAR

As the first example of the application of matrix methods to a vibration problem
we shall consider longitudinal vibration of a uniform bar. To simplify the
calculations the bar will be idealized into two elements, as shown in Fig. 12.2;
thus the idealized system contains only three displacements U1, U2, and U3.
The frequencies and eigenmodes for the idealized bar will be determined using
both the stiffness and flexibility solutions.

K
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U2

L

I

U3-1 FIG. 12.2 Unconstrained bar (free-free).

STIFFNESS SOLUTION

The stiffness and mass matrices for the two-element bar shown in Fig. 12.2 are

2AE
2 -1 2 -1K=

L

1 2 3

1 -1- 0

3 0 -1 1

1 2 3

1 2 1 0

2 1 4 1

3 0 1 2

PAL

M 12

(a)

(b)

The above matrices are obtained from the stiffness and inertia properties of the
bar element discussed in Sees. 5.5 and 11.4.

Substituting (a) and (b) into the equation of motion (12.7), we have

Q
PL

2

1

1

4

0

1 + 2

1

-1
-1

2

0

-1 = 0 (c)cu _12

L
q

0 1 2 0 -1 1

The condition for the nonzero solution for q is that the determinant formed by
the coefficients in (c) must be equal to zero. Hence

1 - 2µ2 -(1 + µQ) 0

-(1 + µQ) 2(1 - 2µQ) -(1 + µ2) = 0 (d)

0 -(1 + u2) 1- 2µ2

where µQ

w2PL2

24E
(e)

By expanding the determinant (cl) the following characteristic equation is
obtained :

6µQ(1 - 2µ2)(u2 - 2) = 0 (f )
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The characteristic equation yields three roots (eigenvalues)

Eui2=00

Ju22 = 2

u32 = 2

6012=0 601=0

6022 = LZ 602 = 3.46 Jii2

6032= pE2 603=6.92
FE

324

(8)

The first frequency to, is the rigid-body frequency (zero), while 602 and 603 are
the elastic-eigenmode frequencies (natural frequencies of vibration). The
numerical values of 602 and 603 are approximately 10 percent higher than the
exact values; however, had we increased the number of elements we should have
improved the accuracy of our solution considerably.

For each frequency to we can now obtain the relative values of q from Eq. (c).
This determines the eigenmodes p. It can be demonstrated easily that the dis-
placements for the rigid-body mode are given by

1 1

Po = 2 1 (h)

3 1

while those for the elastic eigenmodes are

I I 1

pe. = 2 0 -1 (i)

3 -1 1

The modes po and pQ are plotted in Fig. 12.3. The displacement distribution
between the nodes on the elements is linear in accordance with the static distri-
bution in the matrix a from the equation u = aU (see Sec. 10.7).

to
First mode, rigid

i

J X FIG. 12.3 Longitudinal vibration modes based-to L on two-element idealization of a free-free bar.



VIBRATIONS OF ELASTIC SYSTEMS 325

FLEXIBILITY SOLUTION

Only one zero displacement is required here to constrain the rigid-body motion.
By selecting Ul = 0 to establish the rigid frame of reference, it can be shown
that the flexibility matrix for the displacements U2 and Ug is

2 3

L 21 1

2AE 3 [1 2

and the transformation matrix T is given by

T=
3 1

(k)

where the row and column numbers refer to the degrees of freedom in Fig. 12.2.
To calculate the dynamical matrix in Eq. (12.61) we require the mass sub-

matrices M,,,,, M,,u, Mu,p, and M,,,,. These submatrices are obtained directly
from Eq. (b). Hence

LL

1

M,o,u =
pI

1[21

2 3

M,,,,= pAL1[1 01

Muu =

Substituting Eqs. (k) to (o) into (12.58), we have

To = -(11'Iww + TTMu,,,)-'(M,.. + TTMI4U)

_ - p12L [2]
+

[1 1] p12L 0]J l12 [1 0] + [1
pALr4

11 12 1

(1)

(m)
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Having determined the transformation matrix To, we can next calculate the
dynamical matrix D from (12.62).

D = (I - TTo)-1-F(Mu., + MI,To)

= ([0 1] +
[11][2

1]}-12L [1 2Jp ZLl[1 2] -
[1

1] )
pLs 1 0

48E[3 4
(q)

which when substituted into the equation of motion (12.61) leads to

1

(w2[0

1]

48PL2
4])g14 = 0 Q.)

Introducing again lu2 = w2pL2/24E, we can write the characteristic equation as

2µ2-1 0
0 (s)-3 2,u-2 - 4

Hence (2422 - 1)(2,42 - 4) = 0 (t)

and 'U12 = E 1422 = 2 (u)

which agrees with the previous results based on the stiffness formulation.
Substituting in turn the eigenvalues (u) into Eq. (r), we obtain

qu
2[0 -1]

(v)
3 1 1

To find the eigenmode displacement in the direction of w, that is, direction 1,
we use Eq. (12.57). Hence

q:o = Toqu

_ -[2 1]
0 1

[1 1 = [-1 1]

which may now be combined with qu to yield

I -1 1

Pd=2 0 -1
3 1 1

(x)

which agrees with Eq. (i) obtained by the stiffness method except for the sign on
the first column. This naturally is of no consequence, as any column can be
multiplied by an arbitrary constant.
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To check the calculated elastic eigenmodes we use Eq. (12.41). Noting that

r 1
1 1

Po = Cz I = 2 1 (y)
3 1

we have

Pol'Mp = [1
ALp

1 4 1 0 -11 1]
1

1=0
12

2 1 0 -1 1

(z)

which therefore satisfies the equilibrium requirement imposed by Eq. (12.41) on
the inertia forces in the vibrating system.

12.7 LONGITUDINAL VIBRATIONS OF A CONSTRAINED BAR

Taking the displacement Ul = 0 to indicate the built-in end condition for the
two-element bar shown in Fig. 12.4, we obtain the following stiffness and mass
matrices

K
=

r
2AE[2 -1]

L -1 1-
_ PAL r4 1

M' 12 1 2

Substituting (a) and (b) into the equation of motion (12.21), we have

1-w2--I
2I +2L I 1 I

qr=0
1 -1

2(1 - 2u2) -(1 + ,u2)

u2 = 0and -(1
+ ,u2) 1 -2

Expanding the determinant, we obtain

7u4-10,u2+1=0

If
u2Z

1.L

U3

FIG. 12.4 Constrained bar (fixed-free).

(a)

(b)

(c)

(d)
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no. 12.5 Longitudinal vibration modes based
on two-element idealization of a fixed-free bar.

-1.0'-

0 0.5 1.0 L

Hence

P12=;(5-31/2) w1 = 1.6114 E/pL2
(e)

P22 = 3(5 + 31/2) w2 = 5.6293 E/pLz

The calculated values for wl and W2 are 2.6 and 19.5 percent higher than the
corresponding analytical values. The elastic eigenmodes for the two calculated
frequencies co, and W2 are

The modes pa have been plotted in Fig. 12.5.

12.8 TRANSVERSE VIBRATIONS OF A
FUSELAGE-WING COMBINATION

We shall calculate next natural frequencies and mode shapes of a uniform wing
attached to a fuselage mass as shown in Fig. 12.6a. The total wing mass is
distributed uniformly over the wing span of length 2L, and it has a value of 2Mw.
The total fuselage mass has a value of 2MF, with vanishingly small rotational
inertia. The wing is to be represented as a uniform beam with flexural stiffness
El. The effects of shear deformations and rotary inertia are to be neglected.

ONE-ELEMENT SOLUTIONS Since the wing is symmetric about the fuselage center,
we can separate the frequency and mode-shape calculations into symmetric and
antisymmetric modes. As our first approximation we shall use a single-element
idealization illustrated in Fig. 12.6b. The stiffness and inertia matrices for this
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Mw

L

L

IIIIIIIIli L

MF

3 1 3 5 7 9

C=O f =1

(a)

MW

)
X _E

L

4 I 1 4 6 8 10

a E L CIE ` 3I( L 9- -

(b) (C)

FIG. 12.6 (a) Uniform wing attached to fuselage mass; (b) one-element idealization of a
uniform wing attached to fuselage mass; (c) four-element idealization of a uniform wing
attached to fuselage mass.

case are given by

1 12

EI2 6L 4L2 Symmetric
K L3 3 -12 -6L 12

4 6L 2L2 -6L 4L2
1 2 3 4

[13
+ R35

4

Symmetric
11 L L$

210 005

9 13 L 13

70 420 35

-13 -L3 -11 L$

420 L 140 210 L 105

1 2 3 4

(a)

(b)



THEORY OF MATRIX STRUCTURAL ANALYSIS 330

where row and column numbers refer to the displacement numbering shown in
Fig. 12.6b and

_ F (c)

R

M

M10

For symmetric modes rotations at the fuselage center are zero, and hence the
equation of motion

(K - w2M)q = 0 (d)

becomes

EI
12 Symmetric

12 12

6L -6L 4L
1 - w2M

2

13

1 35
+ R Symmetric

9 13

70 35

420 210 105

-13L -11L L2

The natural frequencies and mode shapes can now be determined from Eq. (e).
Thus for R = 0 we obtain the following frequencies

asymmetric = M La [0 5.606 43.8701 (' )
w

and the corresponding modes are

1.0 -0.2627 0.05036-

1.0 0.4293 0.11631
P=

0 1.0 1.0

L L

(g)

where the normalizing factors are adjusted in such a way as to make the largest
numerical values in p, apart from the factor L, equal to unity.

The results for the frequencies when R = 0, 1, and 3 are presented in Table 12.1,
where a comparison with the exact analytical solutions is made. The first
frequency (zero) is the rigid-body frequency. The second frequency obtained
for the single-element idealization is within acceptable accuracy for engineering
purposes, while the accuracy of the third frequency is unacceptable. Thus in
order to obtain better accuracy we must use more elements in our idealized
model. Another drawback when a small number of elements is used is the
inability to draw the mode shapes accurately. For example, for the single-
element idealization only two deflections and two slopes (including the zero slope
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TABLE 12.1 SYMMETRIC-MODE NONDIMENSIONAL FREQUENCY C =
co 1'M,,L'/E/ FOR A UNIFORM WING ATTACHED TO FUSELAGE MASS: ONE-
ELEMENT IDEALIZATION

Mass
ratio Frequency One-element Percentage

R number Exact* idealization error

All values 1 0 0 0

0 2 5.593 5.606 +0.2
3 30.226 43.870 +45.1

1 2 4.219 4.229 +0.2
3 23.707 36.777 +55.1

3 2 3.822 3.835 +0.3
3 22.677 35.575 +56.9

* Obtained from the computer solution of the exact characteristic equation.

at the fuselage center) are available. This, of course, is not sufficient for ac-
curate graphical representation of the third mode. The symmetric mode shapes
for R = 0, 1, and 3 based on one-element idealization are plotted in Fig. 12.7.

For antisymmetric modes deflections at the fuselage center are zero. The
equations of motion for the antisymmetric case are given by

3 I -6L 12 - w2M,o

L 12L2 -6L 4L2

F
L$

105
Symmetric

13L 13

420 35

-L2 -11L L2

q = 0 (h)

l L 140 210 _103j)

Determination of frequencies and modes from Eq. (h) leads to

QnntlsymmetrIe =
V

m Ls 10 17.544 70.0871
w

1.0 -0.77746 0.52322-

L L L

p = 1.0 0.21690 0.09303

1.0 1.0 1.0

(i)

(I)

LL T L J

The antisymmetric mode shapes are plotted in Fig. 12.8. The values of fre-
quencies obtained for the one-element idealization are compared with the exact
values in Table 12.2.

4L2 Symmetric
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1.0

0.5
First mode

FIG. 12.7 Symmetric mode
shapes based on one-
element idealization of a
uniform wing attached to
fuselage mass; R = (fuse-
lage mass)/(wing mass).

FIG. 12.8 Antisymmetric

mode shapes based on one-
element idealization of a
uniform wing attached to
fuselage mass; rotational

0; C th f 1. a is. Ia u1. o e se g
0.8 1.0 assumed to be zero.
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TABLE 12.2 ANTISYMMETRIC-MODE NONDIMENSIONAL FRE-

QUENCY C = WV M ,L2/E! FOR A UNIFORM BEAM: ONE-
ELEMENT IDEALIZATION

Frequency One-element Percentage
number Exact idealization error

1 0 0 0
2 15.418 17.544 +13.8
3 49.965 70.087 +40.3

FOUR-ELEMENT SOLUTIONS We shall now consider a four-element idealization
as illustrated in Fig. 12.6c. The stiffness and inertia matrices for this idealization
are given by

l r 12
2 61 412 Symmetric

3 -12 -61 24

4 61 21 0 812

El 5K _ 0 0 -12 -61 24
13 6

0 0 61 212 0 812

7 0 0 0 0 -12 -61 24

8 0 0 0 0 61 212 0 812

9 0 0 0 0 0 0 -12 -61 12

10 0 0 0 0 0 0 61 2/ -61 412
1 2 3 4 5 6 7 8 9 10-

(k)

1 156 + 1,680R

2 22/ 412

3 54 131 312

4 -131 -3/2 0 8/2 Symmetric

_ M. 5

1N
0 0 54 13! 312

4 x 420 6 0 0 -13/ -3/2 0 812

7 0 0 0 0 54 131 312

0 0 0 0 -13/ -3/2 0 8128

9 0 0 0 0 0 0 54 131 156

10 _ 0 0 0 0 0 0 -131 -3/2 -22/ 41
1 2 3 4 5 6 7 8 9 10

(n
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TABLE 12.3 SYMMETRIC-MODE NONDIMENSIONAL FREQUENCY C = CO VM.VIEI FOR A UNIFORM
WING ATTACHED TO FUSELAGE MASS: FOUR-ELEMENT IDEALIZATION*

R=0 R=1 R=3

Frequency Four-element Four-element Four-element
number Exact idealization Exact idealization Exact idealization

1 0 0 0 0 0 0

2 5.593 5.594 4.219 4.219 3.822 3.821

(0.0) (0.0) (0.0)

3 30.226 30.290 23.707 23.731 22.677 22.701
(0.2) (0.1) (0.1)

4 74.639 75.436 63.457 63.934 62.331 62.813
(1.1) (0.8) (0.8)

5 138.791 140.680 122.722 124.344 121.551 123.254

(1.4) (1.3) (1.4)

6 222.683 248.448 201.725 229.768 200.506 228.710
(11.6) (13.9) (14.1)

7 326.314 392.238 300.442 368.131 299.209 366.996
(20.2) (22.5) (22.7)

8 449.684 603.554 418.894 582.223 417.647 581.326
(34.2) (39.0) (39.2)

9 592.793 954.671 557.081 953.153 555.822 953.087
(61.0) (71.1) (71.5)

* Values in parenthesis represent percentage errors.

where 1= L

For symmetric modes row and column 2, corresponding to rotation at the wing
center, are removed in formulating the equations of motions for the vibrating
wing. Similarly for antisymmetric modes row and column 1, corresponding
to deflection at the wing center, are removed. The resulting equations were
solved using an IBM 1620 eigenvalue and eigenvector computer program. The

TABLE 12.4 ANTISYMMETRIC-MODE NONDIMENSIONAL FREQUENCY

C = W M FOR A UNIFORM BEAM: FOUR-ELEMENT

IDEALIZATION

Frequency Four-element Percentage
number Exact idealization error

1 0 0 0
2 15.418 15.427 0.1
3 49.965 50.231 0.5
4 104.248 106.045 1.7

5 178.270 197.085 10.6
6 272.031 313.199 15.1

7 385.531 488.528 26.7
8 518.771 728.116 40.4

9 671.750 961.199 43.1
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1.0

0.5

0

0.6

04

0.2

-0.2

First mode

1E

Fto. 12.9 Symmetric mode
shapes based on four-
element idealization of a
uniform wing attached to
fuselage mass; R = (fuse-
lage mass)/(wing mass).

results for the symmetric frequencies for R = 0, 1, and 3 are given in Table 12.3,
while for antisymmetric modes the frequencies are given in Table 12.4. The
first five mode shapes calculated by the computer are illustrated in Figs. 12.9
and 12.10.

Tables 12.3 and 12.4 indicate that the accuracy of frequencies for higher
modes is progressively decreased, and only the first half of all calculated fre-
quencies may be considered satisfactory for engineering purposes.
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1.0

0.5

0.1

-0.1

0.1

0

-0.1

0.1

0

First mode

Third mode

Fourth mode

f

F

f

r Fifth mode
-0.1 17

1

0 0.2 0.4 0.6 0.8 1.0

FIG. 12.10 Antisymmetric
mode shapes based on four-
element idealization of a
uniform wing attached to
fuselage mass; rotational
inertia of the fuselage is
assumed to be zero.

12.9 DETERMINATION OF VIBRATION FREQUENCIES
FROM THE QUADRATIC MATRIX EQUATION

Substituting the frequency-dependent mass and stiffness matrices from (10.108)
and (10.111) into Eq. (12.7), we obtain the equation of motion in the form of a
matrix series in ascending powers of cot

(12.89)
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FIG. 12.1 1 Fixed-free bar; one-element ideal-
u ization.

X

L

Since the retention of terms with w4 and higher presents some computational
difficulties, we normally retain only the term with w2 when calculating vibration
frequencies and modes.

To illustrate the application of the general theory we shall consider vibrations
of a uniform bar built-in at one end and free at the other (see Fig. 12.11). In
the equation of motion terms with w4 will be retained; however, in order to
simplify subsequent calculations only one-element idealization will be used.
For a single bar element we have the following matrices

_ AE [l 1 _ pAL 2 1

Ko L -1 1]
Mo

6 [1 2]

K, _ p2AL3[l _ 2p2AL3Il ]
45E I 1 M2 45E I

Hence, after eliminating the row and column corresponding to the displacement
at the built-in end the equation of motion becomes

AE
- w2

pAL
- w4

p2AL3
)qr = 0 (a)

L 3 45E

while the characteristic equation is given by

A4 + 15A2 - 45 = 0 (b)

w2 L2
where A2 = E (c)

The roots of (b) are

A,2 = J(-15 + 91/5)

A22 = J(-15 - 91/5)

(d)

(e)

where only A,, being positive, is applicable to our problem. The eigenvalue A2
must be rejected because a negative value of A would require the existence of an
imaginary frequency. Taking therefore A,2 as the required solution, we have

2

A, = w = 1.6007 (f)

which may be compared with the exact value of 1.5708. Hence the retention of
the term with w4 in the equation of motion resulted in an error of only 1.9
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percent. It would be interesting now to compare the results for the con-
ventional method, where only the term with C02 is retained. The equation of
motion for this case is

(i_w2)qr=o ($)

which leads to

d1 = V = 1.7321 (h)

This result differs from the exact value by 10.3 percent.
In order to demonstrate the considerable improvement in accuracy of the

frequencies obtained from the quadratic equation the fixed-free bar frequencies
have been calculated, using an iterative technique, the number of elements in the
idealized model varying from I to 10. Ratios of frequencies of vibration for the
fixed-free bar determined from the quadratic equation over the exact frequencies
are shown in Table 12.5. For comparison, the corresponding ratios obtained
from the conventional analysis are also presented. This table indicates clearly
that considerable improvement in accuracy is obtained when the quadratic
equations are used. In Fig. 12.12 the percentage errors are plotted against the

TABLE 12.5 RATIOS OF w4Wexnat FOR LONGITUDINAL VIBRATIONS OF A FIXED-FREE BAR (NUM-
BERS IN PARENTHESES REPRESENT VALUES OBTAINED FROM CONVENTIONAL ANALYSIS)

Frequency number
n

1 2 3 4 5 6 7 8 9 10

1.019
I

(1.103)
1 002 1 069

O O O
2

. . i(1.026) (1.195) -----
3

1.000 1.019 1.083
(1.012) (1.103) (1.200) n = 1, 2,..., 10

1.000 1.007 1 041 1.083
4

.

(1.006) (1.058) (1.154) (1.191) L

1.000 1.003 1 019 1 057 1.079
5

. .

(1.004) (1.037) (1.103) (1.181) (1.182)
1.000 1 002 1 010 0321 1 069 1 075

6
. . . . .

(1.003) (1.026) (1.072) (1.137) (1.195) (1.173)

1.000 1.001 1 006 1 019 1.044 1.076 1.070
7

. .

(1.002) (1.019) (1.053) (1.103) (1.161) (1.200) (1.166)

1.000 1.001 1 003 1 012 1.029 1.054 1.080 0661
8

. . .

(1.002) (1.015) (1.041) (1.079) (1.128) (1.177) (1.201) (1.159)

1.000 1.000 1 002 1 008 1 019 1 038 1 062 0831 0621
9

. . . . . . .

(1.001) (1.012) (1.032) (1.063) (1.103) (1.148) (1.188) (1.200) (1.154)

1.000 1 000 1 002 1 005 013 1 0271 1 046 1 069 1 084 1 059
10

. . . .. . . . .

(1.001) (1.009) (1.026) (1.051) (1.084) (1.123) (1.163) (1.195) (1.198) (1.150)
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Fio. 12.12 Variation of percentage error in frequencies of a
fixed-free bar calculated from quadratic and conventional equations.

10

number of elements for the first and fifth modes in order to show the'general
trends more clearly. A perusal of Table 12.5 and Fig. 12.12 reveals that the
percentage error in frequencies is reduced by almost an order of magnitude when
quadratic equations are used instead of the conventional eigenvalue equations.
Furthermore, the rate of decrease in percentage error when the number of
elements is increased is considerably greater for quadratic-equation solutions;
thus the convergence to the true frequency values is much faster with quadratic
equations.

PROBLEMS
12.1 Show that the natural frequency of longitudinal vibrations of a single unconstrained

bar element having a linearly varying cross-sectional area is determined from the formula

a _ 18E (A, -{- As)'
w

pI' A3' + 4A1A, + Ass

where w = circular frequency
E = Young's modulus
I = bar length

A,,A, = cross-sectional areas at x = 0 and x = I, respectively
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Ftc. 12.13

12.2 A uniform bar has two concentrated masses attached to its ends and one mass at its
center; the end masses are mo, while the center mass is 2m0 (see Fig. 12.13). The total mass of
the bar itself is 2m, and its total length is 21. The cross-sectional area of the bar is A and its
Young's modulus is E. For the purpose of analysis the bar is to be idealized into two elements,
each of length 1. The mass ratio m0Jm = 1. Determine the following:

a. The characteristic frequencies of the idealized system

b. The characteristic modes of the system

c. The generalized mass matrix and demonstrate orthogonality relations for the eigenmodes
(elastic modes)

FIG. 12.14

12.3 A uniform cantilever has a concentrated mass mo attached to its free end, as shown
in Fig. 12.14. The flexural rigidity of the beam is El, the cross-sectional area is A, the density
is p, and the length is 1. Using only the translational and rotational degrees of freedom of the
tip, determine the natural frequencies of transverse vibrations. The effects of shear defor-
mations and rotatory inertia are to be neglected.



CHAPTER 13
DYNAMIC RESPONSE
OF ELASTIC SYSTEMS

The first part of this chapter contains a discussion of the equations of motion
of an elastic undamped structure with a finite number of degrees of freedom.
The external loads applied to this structure are assumed to be time-dependent.
Such loads may arise from a variety of causes. In aeronautical applications
such loads are caused by gusts, blast-induced shock waves, rapid maneuvering,
bomb release or ejection, impact forces during landing, catapulting, etc. Both
unconstrained and constrained structures are considered. For unconstrained
structures, e.g., an airplane in flight, the effect of rapidly applied external loads
is to cause not only translational and rotational motion as a rigid body but also
to induce structural vibrations. For totally constrained structures the rigid-
body motion is absent, and only structural vibrations are induced. The solution
of the equations of motion is accomplished by the standard technique of ex-
pressing displacements in terms of modes of vibration. Response integrals
(Duhamel's integrals) for the displacements have been determined for some
typical forcing functions, and the results are compiled in Table 13.1. In addi-
tion to prescribed variation of external forces, response due to forced displace-
ments are also considered. This occurs, for example, when a building is
subjected to earthquake motion.

The second part of this chapter contains a discussion of damped motion of
elastic structures. Solutions to the equations of motion are presented for
three different models of damping: damping proportional to mass, damping
proportional to stiffness, and percentage of critical damping. Numerical
examples are included to illustrate typical dynamic-response calculations.
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13.1 RESPONSE OF A SINGLE-DEGREE-OF-
FREEDOM SYSTEM: DUHAMEL'S INTEGRALS

Before we develop the general analysis of a multi-degree-of-freedom system,
we shall consider the response of a single-degree system without damping, for
which the equation of motion may be written as

MO+KU=P(t) (13.1)

Alternatively, Eq. (13.1) may be expressed as

C + w2U = M-'P(t) (13.1a)

where cot = KIM. The right sides of Eqs. (13.1) and (13.1a) will be assumed
to be known functions of time. We shall obtain solutions to Eq. (13.1a) for
three different force-time variations, unit step function, unit impulse, and
arbitrary variation of the force P(t).

UNIT STEP FUNCTION

The solution of Eq. (13.1a) for P(t) represented by a step function of amplitude
Po (see Fig. 13.1) is given by

U(t) = C1 sin wt + C2 cos wt + M-1w-2P0(1 - cos wt) (13.2)

The first two terms with the constants CI and C2 represent the complementary
function, while the third term is the particular integral. Introducing the initial
conditions on the displacement and velocity at t = 0, we can determine the

constants C1 and C2. Hence we obtain

U(t) = U(0)co-1 sin wt + U(0) cos cot + M-lw-2Po(l - cos cot) (13.3)

When the initial displacement U(O) and velocity 0(0) are both equal to zero
and Po = 1, then

U(t) = A(t) = M-1co 2(1 - cos wt) (13.4)

The function A(t) is defined as the indicial admittance. It represents the dis-
placement response of a single-degree-of-freedom elastic system subjected to a
force described by the unit step function.

FIG. 13.1 Step-function loading.



DYNAMIC RESPONSE OF ELASTIC SYSTEMS 343

Plot- FiG. 13.2 Impulsive loading at t = 0.

6 = impulse

St->0

t

IMPULSIVE FORCE

When an impulse G is applied to the system (see Fig. 13.2), the mass M acquires
an initial velocity U = G/M. Assuming that the impulse is applied at t = 0
and that U(0) = 0, we have

U(t) =
Gto

sin cut
M

Hence for a unit impulse

U(t) = h(t) = I sin cot
Ma)

(13.5)

(13.6)

where h(t) is the response due to a unit impulse. It is clear that h(t) can be
derived from A(t) since

h(t)__d t)dt (13.7)

ARBITRARY VARIATION OF P(t)

An arbitrary variation of P(t) may be assumed to consist of a series of step
increases AP, as shown in Fig. 13.3. Since the system is linear, the response
to the total force may be evaluated as the cumulative actions of the individual
step increases. Thus using the result for a unit step increase, we have for the
particular integral

Tit

U(t) = P(0)A(t) AP A(t - T)
Ta T

= P(0)A(t) +
P A(t - T) AT

TmOT AT

Hence, in the limit,

U(t) = P(0)A(t) + f t dP A(t - r) dT (13.8)
0 0 dT
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FiG. 13.3 Arbitrary function loading.

Dr r

6P= AP Ari------

An equivalent expression may be obtained by integrating by parts

U(t) = P(0)A(t) + [P(-r)A(t - r)]r:o +f fP(-r)A'(t - -r) dT
0

= P(0)A(t) + P(t)A(O) - P(0)A(t) + f `P(T)A'(t - T) dT
0

= P(t)A(0) +f P(T)A'(t - r) dr (13.9)
0

where primes denote differentiation with respect to t. From Eq. (13.4) it follows
that A(0) = 0, so that the particular integral becomes

U(t) =J P(T)A'(t - T) dr
0

= M lw 1 P(T) sin [co(t - T)] dT (13.10)
0

and the complete solution for U(t) is given by

U(t) = U(0)w-1 sin cot + U(0) cos wt + M-lw 1f P(T) sin [co(t - T)] dr
0

(13.11)

The integral in Eq. (13.10) or (13.11) is called Duhamel's integral. This
integral will be used in subsequent sections for determining response of multi-
degree-of-freedom systems.
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13.2 DYNAMIC RESPONSE OF AN
UNCONSTRAINED (FREE) STRUCTURE

The equation of motion for an elastic undamped structure subjected to time-
dependent disturbing forces P(t) is

MU + KU = P(t) (13.12)

Since, in general, both M and K have nonzero off-diagonal coefficients, it is
clear that the differential equations of motion represented by (13.12) are coupled
and that the direct solution of these equations would be extremely unwieldy.
Numerical solutions with time steps have been successfully developed for use
on modern digital computers. These methods have the added advantage that
the coefficients may be treated as time variables, which naturally opens up this
technique to a great variety of problems. In this section only the classical
method based on the so-called modal solutions will be discussed. Other
methods are strictly in the realm of numerical computing techniques.

When the rigid-body modes po and elastic modes p, are used to obtain a
solution for U, the equations of motion (13.12) become uncoupled, and their
solutions can be easily obtained. We assume first that the displacements U
are expressed as a linear combination of po and p, with some appropriate
time-dependent multipliers for the individual modes, so that

U=P`t={Po Pe]

where fi=

CfieJ

00

Cfie1
fio = {fit fit ... fiwl

fi, = {fiw+1 fiw+2 ... fiw+ml

(13.13)

(13.14)

are column matrices of unknown functions of time. Substituting Eq. (13.13)
into the equation of motion (13.12), we find

M(Pofio + Pefie) + K(Pofio + Pefi,) = P(t) (13.17)

Multiplying now Eq. (13.17) by p T, we have

Po11'MPofio + PoTMPefie + PoTKPo4 o + PoTKPefie = PoTP(t) (13.18)

When we use the orthogonality condition

PoTMPe = 0 (12.41)

and note that

PoTK = (KPo)T = 0 (13.19)
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since the rigid body modes po do not produce any restoring forces Kp0i it follows
then from Eq. (13.18) that

PoTMPo4'o = poTP(t) (13.20)

Upon introducing the generalized force

go(t) = p TP(t) (13.21)

and generalized mass

-0o = PoTMPo (13.22)

Eq. (13.20) becomes

-k;0 = 90-190(t) (13.23)

Equation (13.23) can be integrated directly so that

fiQ = Ato 1 90(Ti) dT1 d,-, +X0(0) + 410(0)t (13.24)

where fio(0) and X0(0) are the integration constants, which may be determined
from the initial conditions.

Multiplying now Eq. (13.17) by peT, we obtain

P8TMP040 + PeTMPe'e + PeTKPo16o + P6TKPe41e = Pe2'P(1) (13.25)

Using Eqs. (12.32), (12.33), (12.41), and (13.19), we can transform (13.25)
into

'ffe4'e + -*'.4" = PeTP(t) (13.26)

Hence, after premultiplying by A.-, we obtain

46 + tl6 1. '04,6 = e 1.*6(t) (13.27)

where p0(t) = WP(t) (13.28)

is the column matrix of generalized forces for the elastic modes p6. Noting
also from Eq. (12.31a) that

s 1 6 = S22 (13.29)

we see that Eq. (13.27) is transformed into

4e + &22I'e = Ie 1Pe(t) (13.30)

Since S12 is a diagonal matrix, Eq. (13.30) constitutes a set of uncoupled second-
order differential equations. A typical differential equation from (13.30) is

eke, + w +;(De, = -We,, 196,(1) (13.31)
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where i represents the row number in the column matrix °P,. Solution to Eq.
(13.31) can be obtained using Duhamel's integral from (13.11), so that

(De, = b (0)w sin lot + 0,,(0) cos cottV+

+ [co1e+{(t - dT (13.32)

Equations (13.32) for i = 1 to ni can be combined into a single matrix equation

SZ-1 sin (wt)te(0) + cos (cot)4be(O)

+ 1J sin [co(t - dr (13.33)

where

sin (wt) _ [sin w,,+1t sin w,1 2t sin w,,,+,,,t] (13.34)

cos (wt) _ [cos w,,,+1I cos Ww+2t cos co,,,+,,,tJ (13.35)

sin [w(t - T)] _ [sin [w,,,+1(t - T)] sin [w,,,}2(t - T)] .. sin [w,,+,,,(t - T)]J
(13.36)

Substituting Eqs. (13.23) and (13.33) into (13.13), we find the displacements
U to be given by

U = Po4)o(0) + Pod o(0)t + peSZ-1 sin (wt)c (O) + pe cos (wt)4)e(O)
s a 1-r2fE

+ 1 go(T1) dT1 dr2 + P,11-1 me 1 sin [w(t - r)]9o(r) dr
TQ-0

r,r-=o

0
(13.37)

It remains now to determine the initial values of 4) and 4 at I = 0 in terms
of the initial values of the displacements U and velocities U. From Eq.
(13.13) we have

U(0) = PP(0) = Po4)o(0) + Pe41e(O) (13.38)

and fJ(0) = p4'(0) = p040(0) + pe4e(0) (13.39)

so that 0(0) = p-1U(O) (13.40)

and 4)(0) = p-1U(0) (13.41)

To avoid using the inverse of the modal matrix p we may premultiply Eq.
(13.38) by p0TM, so that

POTMU(O) = PoTMPo41'o(0) + P0TMPe4e(0) (13.42)

which in view of the orthogonality relations (12.41) and (12.42) becomes

PoTMU(0) = -0000(0)

or fio(0) = 90-1p01'MU(0) (13.43)



THEORY OF MATRIX STRUCTURAL ANALYSIS 348

Although we still have an inversion to perform on A0, this is a much easier
task than the calculation of p-1. The generalized mass matrix A. is only a
6 x 6 matrix for the three-dimensional structure; furthermore, if required, this
matrix can also be diagonalized by a suitable choice of reference displacements.

To obtain the initial values of b, we premultiply Eq. (13.38) by p,TM so
that

Pe''MU(0) = P6TMPo`I'o(0) -I- P6TMPs`I'e(0) (13.44)

Using the orthogonality relations (12.33) and (12.41), we obtain

p,TMU(0) = .ille`I'e(0)

or fi,(0) = 1 1p,TMU(0) (13.45)

Here the calculation of the inverse of Jl, presents no difficulty since the gen-
eralized mass . is a diagonal matrix. In an identical manner we can de-
termine i0(0) and 16,(0) from Eq. (13.39) and obtain

fi0(0) = NO-'pTMU(0) (13.46)

and .6,(0) = 0g 1p,TM1'J(0) (13.47)

Having found the initial values of 43, and fi, we can now write the displace-
ments U from (13.37) as

U = Pol-1 P0TM>'J(0)t + p,S2-1 sin (wt)4 1p,TMU(0)
*2-6 *1=Ts

-I- p, cos (wt)Me 1p,TMU(O) + 1 dT1 dr2
r.=0 r1=0

+ P.2-1A- 1 1 osin [w(t - dr (13.48)
JJ0

For complicated time variations of t0 and P. forces the integrals in (13.48)
must be evaluated numerically; however, for most practical calculations the
applied forces are represented by simplified functions for which the required
integrals can be explicitly determined. Duhamel's integral for the last term in
(13.48) has been evaluated for some typical variations of °.P, with time, and the
results are presented in Sec. 13.6.

The displacements obtained from (13.48) are used to determine the dynamic
forces and stresses in the structure. Since the rigid-body components of the
displacements do not contribute to the stresses, the terms premultiplied by po
may be omitted when only stresses are required. Examining the form of Eq.
(13.48), we may note that the solution, in accordance with (13.13), is a finite
series in terms of the rigid and elastic modes and that the terms with the elastic
modes are inversely proportional to the corresponding frequencies. In practical
applications, we do not include all the modes, and usually only the first four
or five modes are retained in the solution. Naturally no general recommenda-
tion can be made as to the exact number of modes to be used, and every solution
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must be examined individually to determine the relative contributions from the
rejected modes.

It has been demonstrated63 that more rapid convergence of the solution for
the displacements U is obtained if we first determine inertia forces and then use
them as the applied static loading. To determine the inertia forces we use

P{ = -MV

Evaluating I) from Eq. (13.48) and (13.30) gives

P, = Mp,SZ sin (w1)4?6 'p,TMU(0) + Mp,SZE cos (wt)Jle 'p,TMU(0)

(13.49)

- '9o - Mp8J(5 1J, + Mp,SZX, 1J sin [w(t - T))fPe(T) dT
0

(13.50)

The resultant effective static loading is obtained from the sum P + P{, which
can then be used in the equilibrium equation for the matrix displacement
method

KU=P+P, (13.51)

The displacements calculated from Eq. (13.51) characterize the dynamic
behavior of the structure under dynamic loading P(t).

The term -Mp0./(0 1°.Po in (13.50) represents the rigid-body inertia loading,
while the remaining terms give the additional elastic-inertia loads on the flexible
structure. Because of this separation of rigid- and flexible-body loading, fewer
elastic modes p, are necessary to achieve the same accuracy as compared with
the direct solution for the displacements from Eq. (13.48). Normally all
preliminary design calculations on aircraft and missile structures are carried
out for the rigid structure; only in the subsequent design calculations are the
flexibility effects included. Consequently, the use of Eqs. (13.50) and (13.51)
is a logical choice for dynamic-response calculations, and, furthermore, it is
consistent with present design practice.

13.3 RESPONSE RESULTING FROM IMPULSIVE FORCES

We shall assume that the system is subjected to impulsive forces at time t = 0.
These forces (impulses) will be represented by the column matrix G. The
initial velocities imposed on the system are therefore given by the relation

MU(0) = G

or U(0) = M-'G (13.52)

Substituting this expression for U(0) in Eq. (13.48), setting U(0) = 0, and noting
that there are no forces acting on the system for t > 0, we obtain the following
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equation for the displacements caused by impulsive forces:

U = p04?0 1PoTGt + p,91-1 sin (wt)i16 1p,TG (13.53)

The first term in (13.53) represents the rigid-body motion, while the second
term gives the elastic displacements of the system.

13.4 DYNAMIC RESPONSE OF A CONSTRAINED STRUCTURE

For a constrained or overconstrained structure all rigid-body degrees of freedom
are suppressed. Only the elastic modes p, are present, and consequently the
expressions for the dynamic displacements and inertia forces for such structures
are considerably simpler than those for unconstrained structures.

Using Eqs. (13.48) and (13.50) for constrained structures, we obtain expres-
sions for the displacements and inertia forces

U = p,92-1 sin (wt) (e 1p,TMUJ(0) + P, cos 1p,TMU(0)
I

+ Pe91-1 . 1 sin [w(t - r)]9,(r) dr (13.54)
0

and

P{ = Mp'51 sin (wt)A e 1p,TM1'J(0) + Mp,112 cos (wt).lo 1p,TMU(0)

- Mp,.I, 19' + Mp,S2A16 1 f sin [w(t - T)]P,(.r) dT (13.55)
0

13.5 STEADY-STATE HARMONIC MOTION

If the applied forces are harmonic, they may be represented symbolically as
P = Pe{°'t, and the steady-state solution for the displacements U has the form

U = Ue{°" (13.56)

When Eq. (13.56) is used, the equation of motion (13.12) becomes

(-(0QM + K)10 = P (13.57)

and hence ICJ = (-wQM + K)-'P (13.58)

provided, of course, that I-wQM + KI 0. The inversion in (13.58) can be
avoided if U is expressed as a linear combination of the modes po and p,.
Taking

10 = Pl = PAo + P°`I'o (13.13)

and substituting in Eq. (13.57) gives

-0)°Mpo$'o - w°Mp,`Il, + Kpo`bo + KPat6 = $ (13.59)
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Premultiplying Eq. (13.59) by p0T and using orthogonality relations yields

-w2Po7MPo4o = PoTP (13.60)

hence Zo = -0)-2 0 1p TlP' (13.61)

Similarly, premultiplying Eq. (13.59) by pct' gives

-w2P0TMPa`I'e + P6TKP6`I'a = P'TIP (13.62)

Noting from Eq. (12.31a) that

PBTKpo = X, = 611Ag (13.63)

we see that Eq. (13.62) becomes

6 + SL2.1a4'e = p6Tp

and I = ZB 1(SLz - cull)-1pgTP (13.64)

Using Eqs. (13.61) and (13.64) in (13.13), we find that the expression for the
amplitudes of displacements becomes

U = -w 1p0T)p + poke 1(SL2 - (02I)-1pa7'$ (13.65)

The matrix 122 - w2I is diagonal, and it becomes singular whenever w, in
S22 is equal to w2. When this condition occurs, the forcing frequency co is
equal to one of the natural frequencies of the system.

13.6 DUHAMEL'S INTEGRALS FOR TYPICAL FORCING FUNCTIONS

In practical calculations the applied loading P(t) and hence the generalized
loads 9, are usually approximated by simple functions for which the Duhamel's
integrals can be determined exactly. For easy reference the results for most
commonly employed forcing functions 91 are summarized in Table 13.1.

13.7 DYNAMIC RESPONSE TO FORCED
DISPLACEMENTS: RESPONSE TO EARTHQUAKES

Let us suppose that the displacements U on a structure are partitioned into
two submatrices such that

U= (13.66)

and the displacements U are forced to vary in a defined manner. Thus the
displacements U, are prescribed functions of time. This problem is of practical
importance in calculating the response of a building to earthquake movement.
The earthquake causes lateral movement and rotations of the foundation,
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TABLE 13.1 RESPONSE FUNCTIONS FOR UNDAMPED SYSTEMS

Case
no.

1

2

po (1 - cos wt)
w

t
Forcing function 9.(t) sin [w(t - r)]g.(T) dr

0

I

3

t

t

a ! sinwtr - /II

b (o+2coswt- 2)
to w 2 (02

352

P

\
sin w11

0ito W

4

Po

to

t

t < to

P. sin w(t - to)
wt0 t0+ W

sin wti
W

1>to

pa (1 - cos wt)
W

5

6

PO

Po (1-e"/3t )

Poe-Rt

W
'-e-s°+

P2

+
/l

+ cos wt -

w

+ / sin Wt)
w

W

P0w
e-Re - coswt
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TABLE 13.1 RESPONSE FUNCTIONS FOR UNDAMPED SYSTEMS (Continued)

Case
no.

Po

7

- Po

8

9

Forcing function 9,(t)

to

Po

10

t1 t2 t3

sin [w(t - r)]9,(r) drf0

t

W31opoto

47r°
(wt° sin 27r

fo

- 2zr sin wrl

Powl 3

w'ro2 - 47x3

t
x (cos 27r - - cos wt

to

PO (1 - cos oil) t < to
W

Po [cos w(1 - to)
W

- Cos wt] t > to

See case 4 for r < t3; t, = to

p0 [wt, + sin w(t - t,)
war,

- sin w1] - Po

w3(l3 - lx)
x [w(1 - t3) - sin w(t - t3)]

t2<1 <13

Po [sin w(1 - t,) sin oil

wlI W/I

sin w(1 - t3)
w(t3 - t3)

sin w(t - 13)]+ /> f3
w(13-13)
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TABLE 13.1 RESPONSE FUNCTIONS FOR UNDAMPED SYSTEMS (Continued)

Case
no.

354

Forcing function 9(r) sin [w(r - T)]9.(r) dr
0

Pp
1

sin wt))-
wto w

11

Po

10

t
4-

I<to

LPo !o cos w(t - tp)
wto

t>to

Pp t

1 - cos wt - -
w

I

to

+ sin wt
wro

12 po I -cos wt
co

1 <to

t>to

13

to 210

t

P ! sin cot)1- 1 t<tp
wl w

Po [210 - I
wto

+ 2 sin w(t - to) - sin wt]
w w

to<t<2to

W tofo

[2 sin w(1 - to)

- sin w(t - 2to) - sin wt]
t>2to

Po
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TABLE 13.1 RESPONSE FUNCTIONS FOR UNDAMPED SYSTEMS (Continued)

Case
no.

Forcing function 9a(t) sin [w(t - T)]9a(T) dr
0

Polo t
w=tp2 - 7r1

wto sin 7r
to

14

PO Po sin rt/to - IT sin wt t < to

-Poirto
to wRtp= -

[sinw(t-I0)

+ Sin wt] t > to

4Ppwl' 7rtcos -
4w'tps - 70° 2to

15

Po cos 7rt/2to

to

- cos cot) t < to

t -4Potos 7r

4w'to2 - 7r2 21p
sin w(t - to)

+ w COs wt] t > to

Po(1 -coswt)
w

16

Po- Cos w(t - to) - Cos wt
t0 w

- tp)
0102

w$tp3 - 47r$ [cos 0)(I

Ppw! ' 27rtcos -
wEf$-47T1 to

- cos wt I t < to
2Po Po(t-cos 2irt/to)

- cos wt]1 t > to
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TABLE 13.1

Case
no.

RESPONSE FUNCTIONS FOR UNDAMPED SYSTEMS (Continued)

Forcing function 9.0)

Po

17

-Po

f J
`sin (w(t - T)]9'e(r) dr

0

Polo
to sin

2Trt

Wptp° - 4tr2
cot.

to

- 27r sin cot) t < to

2rrPo1o

wttox - 419
[sin w(l - to)

- sin wt] t > to

Po
c(1-Cosw/) t<to

18

-Po

Po

to

2 to t
4.

P
P [2 cos w(t - to) - cos wt

-1] to<t<2t

Po (2 cos w(t - to) - cos wt
co

- cos w(t - 2to)l t > 2to

forcing the displacements on the structure to follow the earthquake move-
ments. There are also many other practical applications where the structure is
subjected to forced displacements rather than to applied forces.

By using the partitioning in Eq. (13.66) the equations of motion can ac-
cordingly be partitioned into

Mo MxyU_T[ 1 + [KL Kxvl [Ux1 = r 01
(13.67)

Mv= MvvJ LUvJ LKva K.1.11 LUvJ LPvJI
where PV represents the column matrix of unknown forces causing the displace-
ments U. Taking the first equation from (13.67), we have

M.U. + Mo;vt)v + K.U. + KmvUv = 0

or M, U. + K.U. = P. (13.68)

where P. = -M.J) - (13.69)

The solution to the above modified equation of motion can be obtained in
terms of the eigenmodes and frequencies of a constrained system for which
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U,, = 0. Assuming that U = 0 eliminates all the rigid-body degrees of
freedom and that Ux(0) = U,,(0) = 0, we obtain from Eq. (13.54)

U. sin [)(t - r)]iA,(T) UT (13.70)
0

where p, denotes the eigenmodes of the constrained system and w the cor-
responding circular frequencies. Furthermore

St = [u)1 (13.71)

dt' = PeT MxxPe (13.72)

-p T(MxuUv + KxuUv) (13.73)

Once the displacements Ux have been calculated, we can compute from Eq.
(13.67) the forces P necessary to cause the required displacements U,,.

13.8 DETERMINATION OF FREQUENCIES AND MODES
OF UNCONSTRAINED (FREE) STRUCTURES USING
EXPERIMENTAL DATA FOR THE CONSTRAINED STRUCTURES

The experimental difficulties of determining mode shapes and frequencies for
an unconstrained structure hinge around the problem of supporting the structure
during the vibration tests in a manner which will not interfere with the develop-
ment of free-free modes. This, of course, is very difficult for large structures.

In this section we shall describe an analytical method of determining fre-
quencies and mode shapes for the vibrations of an unconstrained structure using
the experimental vibration data for the same structure supported rigidly on
the ground. For example, an aircraft can be vibration-tested while supported
rigidly at several points on the ground and the experimental results thus ob-
tained can be applied for determining the vibrational characteristics in flight
when the structure is not subjected to any external constraints.

We shall assume that the displacements on the unconstrained structure are
partitioned into U. and U,,. Furthermore, we shall assume that vibration
tests to determine frequencies and mode shapes can be performed while sup-
porting the structure in such a manner that U = 0 and that all rigid-body
degrees of freedom are excluded. As an example, we may use a rocket
attached to its launch pad, shown in Fig. 13.4. The displacements U,, will be
those associated with the attachment points, while U. will represent all the
remaining displacements, the number of which will depend on the idealization
of the structure. The equation of motion for a freely vibrating unconstrained
system in which U,, 0 is given by

LM,,,, M,,

[U1

U,,+
L[K.. K., U'l 0

Kdx K ,J [UV = L01
(13.74)
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FiG. 13.4 Rocket mounted for vibration tests on a launch pad.

From the first equation in (13.74) we have

M U + M.J), + K.U. + 0 (13.75)

Also, for harmonic vibrations, we have

U. = gye{°'t (13.76)

Ut, = gvetmt (13.77)

and U = -cvzgvefoie (13.78)

where co is the circular frequency of vibrations of the unconstrained system.
Substituting now Eqs. (13.77) and (13.78) into (13.75), we obtain

M,% + K.U. = (cw2M. - Kmu)gvet°ie (13.79)

The right side of Eq. (13.79) represents harmonic loading, and therefore the
solution (13.65) is applicable provided the modes for a constrained structure
are used. Hence it follows that

U. = w2l)-1P T(waMav - K.v)gveioe = %e:mt (13.80)

with El = [@12 w22 ... w,,,2] (13.81)

and .iK, = PeT M.PB (13.82)

where PQ is the modal matrix for the constrained system with U = 0 and
W1, ... Wm are the associated frequencies.
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Using the second equation in (13.74) and Eqs. (13.76) to (13.78), we get

(-(02MMX + Kvx)gebwt + (-co2Mvv + 0 (13.83)

Combining Eqs. (13.80) and (13.83) into a single matrix equation and then
canceling out the exponential factor e=°'t, we obtain

I 12 - w2I)-1p'T(co2M.v K.xv x _9
--- --- ---------------................ -............................... -- --- ----- - -- -------- (13.84)0

-w2Mvx + K,,,,:: -co2Mvv -I- Kvv
1 1
J [qu

To obtain symmetry of the above equation we can premultiply the first row of
submatrices by [p., J( 1(SZ2 - w21)-1peT]-1 so that

(PT)-1(-w2I + SZ2) llepQ
1 -w2Mttv + Kzv11 qX

..C ...................... --------------------- _....... _-------
-

J L =
0

-w2Mvx + Kva -w2M,ry + Kvv qv

or

(
(p a

1
Kzv1 - w2 (PeT)-1 ePa

1 Mzv1
l
q=

0
\ C Kvm ici Mva Mvjj / [qj

(1 3.85)

As a further simplification we may use

JFtZ = (13.86)

obtained from Eq. (12.31a). Hence

_
(

K. K,v1 K,p,SZ-Zpe 1

- w2

M.v
(13.87)

Kum K.., [ Mvm MvvJ /
11

1401gvj 0

This equation can be used to determine the frequencies co and modes {qx qv}

for the unconstrained system. The stiffness matrices K,,,, K, K.., and K.,
can be obtained from static tests on the constrained structure by first deter-
mining the influence coefficients for the directions of U,, with Uv = 0 and then
using Eq. (6.106) to derive the required stiffness matrix. The modes po and
frequencies SL are obtained from vibration tests, which allow us to determine
the matrix product K,p.SL-2p. 1; however, the submatrices M1,v, Mva, and Mvv
must be calculated, as no reliable direct experimental techniques are available
to measure mass matrices. Alternatively, the structure can be supported in
other locations and the vibration tests carried out to determine the remaining
mass submatrices. -

13.9 DYNAMIC RESPONSE OF STRUCTURAL
SYSTEMS WITH DAMPING

The mathematical formulation of expressions for the damping forces in a
structural system subjected to dynamic loading poses a difficult problem that
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still requires extensive research. Unlike mass or stiffness, damping is not
necessarily an inherent property of the system. Damping forces depend
not only on the oscillating system but also on the surrounding medium. For
example, air has a significant effect on the oscillatory motion of the structure.
The damping mechanism is customarily described as one of the following:

viscous damping
structural damping
negative damping

Viscous damping occurs when a structural system is moving in a fluid. The
damping forces are then dependent on the velocities, and when the system is vi-
brating freely, the amplitudes of vibration decay exponentially. If the amount
of damping in the system is greater than a certain critical value, the oscillatory
character of motion ceases. In structural systems, however, the amount of
damping present is considerably less than this critical value.

Structural damping is caused by internal friction within the material or at
joints between components. The damping forces are a function of the strain
in the system, and the mathematical formulation of this special case of damping
is not readily amenable to structural analysis.

The so-called negative damping occurs when, instead of dissipating energy
from the vibrating system, energy is added to the system. A typical example of
such damping is flutter, which is defined as the dynamic instability of an elastic
structure in an airstream. Flutter analysis will not be discussed in this book;
however, it should be pointed out that matrix methods have also been applied
to aeroelastic analysis, including flutter analysis, of aerospace vehicles.

In subsequent sections we shall discuss the formulation and solution of prob-
lems in which only viscous damping is present. For structural systems with
viscous damping, the equations of motion can be written as

MU+CiJ+KU=P (12.4)

where C is the symmetric matrix of damping coefficients. To solve Eq. (12.4)
we may again assume that the solution for U is of the form

U = Po`l'o + PA, (13.13)

Hence Eq. (12.4) may be written as

MPo4o + Mps$'e + Cp040 + CPe4e + KPo`I'o + KP6`De = P (13.88)

Premultiplying this equation in turn by p T and peT and using orthogonality
relations, we obtain two sets of equations

04 o + `Born + PoTCPe4 d = °.Po (13.89)

and e4e + PeTCPo4'o + `8e4e + SZ24Ye4', = i1'e (13.90)
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where ro = poTCpO (13.91)

and Y16 = p,TCp, (13.92)

represent generalized damping matrices. The two sets of equations become
uncoupled from each other provided

p TCp, = 0 (13.93)

Furthermore, if both ro and te, are diagonal, the equations in each set also
become uncoupled, and they can be solved individually. Utilizing the or-
thogonality relations, we note that ''o and D, become diagonal when the matrix
C is proportional to either M or K. Alternatively, the generalized damping
matrix W. could be taken as a certain percentage of critical damping. All
these conditions would also satisfy Eq. (13.93). Solutions for the dynamic
response of elastic systems with damping matrix proportional to mass, stiffness,
and critical damping will be discussed in the next three sections.

13.10 DAMPING MATRIX PROPORTIONAL TO MASS

We shall assume that the damping matrix C is given by

C = 2SM (13.94)

where fl is a constant of proportionality. When Eq. (13.94) is substituted
into (13.89) and (13.90), we obtain two sets of equations

cI'o + 2fl = X0 190 (13.95)

and fi, + 2 f 1 a, (13.96)

The ith row from (13.95) can be written as

4)0, + 29fio, = (4'_1)
a

(13.97)

When the Laplace transform

o
'0'0,(t) dt0o,(p) = e

is used, Eq. (13.97) becomes

0o,(p)(p2 + 2j9p) = [boa Ao(p)]t + p4).,(0) + X0,(0) + 29cb0,(0)

and hence

(13.98)

(Do (p) =
[0

1 (0) (13.99)
p(p -I- 2f9) p p(p + 2fl) `

Noting that

1 1-e
1 (13.100)Y- p(p +

2j5)
=

2(3
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and using the convolution theorem

LP-1[g(p)h(p)1 = f ,g(t - T)h(T) dr
0

and tables of standard Laplace transforms, we obtain from Eq. (13.99)

' 1 - e-2 1
00,(t) =fo

2(3
[J10- i go(T)]t dr + X0,(0) + 2(3 1Do,(0)

(13.101)

(13.102)

Collecting all equations (13.102) for i = 1 to in into a single matrix equation,
we have

'Do 1jo (1 - dT + $'0(0) + 1

sRt

0(0) (13.103)

The solution to equations (13.96) is obtained in a similar manner. The
ith row from (13.96) is written as

(De, + 2(3(Dej + a),2w+i(De, = (../le 1 (13.104)

and the Laplace transformation is applied to this equation, leading to

(!,,,,
[Aa 1 ,pe(p)]i

R
+ p(D,,,;(0)

P)2
(,,(0) + (13.105e111') - (p + N)2 + ((,).2+, - P2) (p + P)2 + (0)w+ti - p2) )

Using the convolution theorem for the first term in (13.105) and tables of
standard Laplace transforms for the second term, we obtain

(w0 - #2)-1`e-nu-'> sin [(wo+i - /) (t - T)][ a dT
0

+ e-Rl cos [(co . - p2)jt](e,(0) + e-R'(a)m+: - p2)-i sin R2)1t]

x [(DQ, (0) + 9(D,, (0)] (13.106)
which can be written collectively as

,Z,e = (fl2 - 11 ae-hJcl-*) sin [(w2 - j)i(t - r)]_0.(r) dr

//

Jo

+ e- 1' cos Y2)It]`I'e(0) + e-PI(622 - fl2I)-1 sin [(w2 - fl2)jt]

t X [&(0) + Pc'e(0)] (13.107)

Substituting Eqs. (13.103) and (13.107) into (13.13), we obtain an equation for
the response of an elastic system with damping proportional to the mass
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matrix M. Hence
I

U = 2# 0(1 - e-213(1-11)90(T) dT + po`I'o(0) + 2I (1 -

p"(S12 - I2I)-J./( 'J te-1(t-*) sin [(w2 - 132)1(1 - T)] 9,(-r) dT
0

+ a-R1p., cos [(tj2 - e-I(S22 - R2I)-i sin [((02 - t'2)It]F'x

[c (0) + fl' (0)] (13.108)

The initial values X0(0), b0(0), and ,(0) are to be determined in terms
of U(0) and U(0) from Eqs. (13.43) and (13.45) to (13.47).

13.11 DAMPING MATRIX PROPORTIONAL TO STIFFNESS

For the case of damping proportional to stiffness

C = 2yK (13.109)

where y is a constant of proportionality. Substituting Eq. (13.109) into
(13.89) and (13.90) leads to

*0= 01.*0 (13.110)

and -6, + 2y224,. + 224) = Aa 'ga (13.111)

Application of Laplace transformation to Eqs. (13.110) and (13.111) results in
rt

-00 = -NO-'
J

(t - T)go(T) dT + lb0(O) + 4o(0)t (13.112)
0

y2..2)-ISZ-IA0 1 ,exp [-yco2(1 - T)] sin [w(1 - y2w2)I(t - T)]
0

x Pa(T) dT + exp (-y(02t) cos [w(1 - y2(02)It]fi,(0)

+ exp (-yw2t)(I - y222)-J&2-1 sin [w(1 - y2(02)It][I (0) + ySj2`I'a(0)]
(13.113)

The displacements U are then determined from

U = PAo + PA.

= POio ' (t - T)9o(T) dT + Po4lo(0) + P0i0(0)t
0

t

+ Pa(I - Y2S2202-1J(' exp [-yc02(t - T)] sin [w(1 - y2w2)I(t - T]
0

x °.P8(r) dT + p, exp (-yw2t) cos [60(1 - y2(02)+t](ba(0)

+ Pa exp (-yw2t)(I - y2612)-112-'sin [w(1 - y2w2)it]
X [4e(0) + Y22`be(0)] (13.114)
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where

exp (-yw2t) = [exp (-YU,+It) exP (-Yww+2t) ... exp (-Ywu,+mt)]
(13.115)

exp [- yw2(t - -r)]
_ [exp [-Yww1(t - r)] exp [-yw.2+2(t - z)] ... exP T)]1

(13.116)

The initial values of Fo, c,, 1o, and fie are found, as in the previous case,
from Eqs. (13.43) and (13.45) to (13.47).

Both cases C = 2yM and C = 2yK allow for the determination of damping
characteristics of the system in terms of only one constant. In most practical
applications, however, a single constant is inadequate to describe the damping
of a multi-degree-of-freedom system. Consequently, the representation of
damping to be described next appears to be more attractive because it allows
the use of a number of constants equal to the number of elastic degrees of
freedom.

13.12 MATRIX C PROPORTIONAL TO CRITICAL DAMPING

In this case it is more convenient first to combine Eqs. (13.89) and (13.90)
into one equation, assuming that p T'Cp, = 0, so that

L 0

0 A0 40 W

[e1 + [ Oo Wc] ['6e] + [0 122J(] [4e] = [e1
(13.117)

The critical damping for a single-degree-of-freedom system is given by

Cen t, = 2Mw (12.88)

while any value of damping can be expressed as

C = 2vMw (13.118)

where v represents the ratio of the actual damping over critical damping;
consequently, for structural systems v will be less than one. By analogy we
shall assume that the generalized damping may also be represented as certain
fractions of the critical damping. This implies that

W = [ieo 'a] = St]

= 2L0
0J (13.119)

0 v,, .ilLSt

where the diagonal matrix v is given by

v = [0 vr]

ve 1Vw+1 1',,,+2 7'w+m]

(13.120)

(13.121)
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in which a typical term v,+{ represents percentage of critical damping for the
ith elastic mode pw+r

Using Eq. (13.119) in (13.117), we obtain two sets of uncoupled equations

40 = lfo 1ap0 (13.122)

4. + 2' 4', + n24,, = lt'-1g (13.123)

Here again, the solutions to the above equations can be obtained using the
Laplace transform technique. It can be demonstrated that the following results
are obtained :

fio = ylo 1 (t - T)°1'o(T) dT + 4I'0(0) + - i0(0)t (13.124)
0

and

4' = (I - v2) 1f `exp [-vw(t - T)] sin [w(1 - v2)i(t - r)19.(T) dT
0

+ exp (-vwt) cos [w(1 - v2)it]4e(0)
+ exp (-vwt)(I - v2)-152-1 sin [w(1 - v2)it][i (0) + vSZ4 (0)] (13.125)

Hence the displacements are given by

U = Po`l'o + Pa`l's
a

= (t - T) 90(T) dr + Po,o(0) + P04'0(0)t
n

+ pe(I - 1J texp [-vw(t - T)] sin [w(1 - v2)I(t - T)] (T) dr
0

+ pB exp (-vwt) cos [w(1 - v2)it]fic(0)
+ p6 exp (-vwt)(I - v2)-ic _1 sin [w(1 - v2)it][4e(0) + vSZ 6(0)] (13.126)

Also the same procedure as in previous cases is followed to evaluate the initial
values of 4'(0) and 4(0).

To determine the damping matrix C we note that

sf = pTCp (13.127)

where p = [p0 p,]. Consequently, premultiplying Eq. (13.127) by (p")-1 and

postmultiplying the resulting equation by p-1, we obtain

C = (pT)-1`8P71

0 0 (13.128)
= 2(PT)-1

0 v.AQSt
P-1

which determines all the coefficients CC1 in terms of the specified "percent"
damping in each mode. It should be noted, however, that knowledge of C
is not required to determine displacements and hence stresses by the present
method.
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The advantages of assuming percentages of critical damping are now apparent.
The coefficients in the diagonal matrix v, are adjusted until a reasonable result
is obtained. Although the number of coefficients in v, is equal to the number
of elastic degrees of freedom, only the first few coefficients are normally used
to approximate the measured damping characteristics of the actual system.

13.13 ORTHONORMALIZATION OF THE MODAL MATRIX p

We have seen in preceding sections that the expressions for displacements due
to dynamic loading require the generalized mass matrices Ko and ,,. Some
simplification of these expressions is possible if both , and A. can be made
into unit matrices. The transformations required to achieve this are quite
simple. Assuming that Ao is a diagonal matrix (it can always be made one
by a suitable choice of the frame of reference for the rigid-body displacements
or by a formal matrix diagonalization) we have
Ao = p TMpo = diagonal matrix (13.129)

After premultiplying by dZo I and postmultiplying by .00-i Eq. (13.129)
becomes

I = ,ff,7J Jto.Wol = X20 1p TMp,X0 I
_ pOTMpo (13.130)

where 0o = (13.131)

is the modal matrix for the modified rigid-body modes. Such modes, on
account of relationship (13.130), are called orthonormal modes. The trans-
formation in (13.131) results in multiplication of each node in po by a factor
equal to the reciprocal of the square root of the generalized mass in that mode.

Similarly we can show that

P,TMA, = I (13.132)

where @, = P.-NO-1 (13.133)

is the modal matrix of the elastic orthonormal eigenmodes. We may also
note that if orthonormal modes are used, then from Eq. (12.31a)

_Y, = P,TK¢, = 22 (13.134)

while the equilibrium equations (12.20) require

p0TMp, = 0 (13.135)

Combining Eqs. (13.130), (13.132), and (13.135), we obtain the orthogonality
relationship

OTM§ = I (13.136)

where 0 = [Do ¢,] (13.137)
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13.14 DYNAMIC RESPONSE OF AN ELASTIC
ROCKET SUBJECTED TO PULSE LOADING

As an example of the dynamic-response analysis we shall consider a rocket in
flight. The rocket is subjected to a sudden application of constant axial
thrust of magnitude Po acting for the duration of time to, as shown in Fig. 13.5.
For the purpose of matrix analysis the rocket will be idealized by two bar ele-
ments with properties based on the average properties of the rocket. Further-
more, for simplicity of presentation the two elements will be identical. The
idealized structure is shown in Fig. 13.6.

The vibrational characteristics for this configuration have already been
determined in the example discussed in Sec. 12.6. Using the numbering for
displacements shown in Fig. 13.6, we can summarize the main results from
that example

SZZ = [0)22 o0g2J = L2 [12
PL

48] (a)

Po (b)

1 1

P, = 0 -1 (c)

-1 1

2 1 0

M=PAL 1 4 1 (d)
12

0 1 2

We calculate first the generalized mass matrices Ao and Ae.

AL
2 1 0 1

1 4 1 1

0 1 2 1

(e)o= PoTMPo = [l 1 1]
p

I
I= PAL

12
.I

I t

to
r

FIG. 13.5 Pulse loading.
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n
U3 A P3 FIG. 13.6 Two-element idealization; specified

thrust P, = P,(!).

L
2

T
U2 P2 A

L

2

W

me = PSIMP, =

U, P1=P,(1)

2 1 0 1 1-
0 -1 pAL

1 4 1 0
JPALr1

-1 1 12 3 0
0 1 2 -1 1

Since only one force is applied to the system,

00

where the force Pl is represented by the rectangular pulse in Fig. 13.5. From
Eqs. (b), (c), and (g) we can next calculate the generalized forces go and Pe.

-P1-

go = pTP=[1 1 11 0 =P1 (h)

0
Pi

1

and .90 =peTP=

[:1
1 -1 1

P1

PI

(i)

Assuming that the initial displacements and velocities are all equal to zero,
that is, U(0) = U(0) = 0, we obtain an expression for displacements from
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Eq. (13.48)

rp t I('rl-r2 / t nU = Po' o 1

a

J
'01T1) dT1 dT2 + sin [CU(t - dT

rt°0 rt=0 0

U)

where all the necessary matrices have already been determined. For the
first integral in (j) we have

rp t rlmrp90(
t < to

v
T1) dr1 d12 dT2 = JP0t2 (k)

r2-0 r1s0 2=0

rrr2=t r1°rs rI=rp
t > to M0(r1) di1 dT2 =90(r1) dT1 dT2

2=0 rl=0 p 0 r1=0
f2=t r1=rp

o(1 ) dT1 d,-2
rp=t0 r1=0

==-toP0T2 dT2 dT2
rg 0 r2 -to

_ JP0102 + Poto(t - to) = P0101 - JPoto2 (1)

For the second integral we have

50

f t sin [C02(t - T)] 0 P1(T)
sin [w(t - T)] °.Pa(T) dr = dr

0 0 sin [wa(t - r)]] [PI(T)]

l
t
sin [C02(t - T)] P1(T) dT

Sin [wg(t - T)] P1(T) d7
o

The integrals in Eq. (m) can be determined from case 9 in Table 13.1.
from Eq. (j) the displacements U for 0 < t < to become

1 1

9

0
PAL

11 -
U ['1---+[

L 3P 2
12 E[0

1

(m)

Hence

(1 - cos wet)
0 1 0 0)2

1]PAL[0 1] Po
- (1 - cos coat)
ws

1

_ Pots Po / 3
2PAL 1 + 4A EP

1

G - cos wit)
w2 wa

- (1 - cos cost)
OJS

(1 - cos wet) + (1 - cos wat)
w2 wa

(n)
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Similarly for t > to
11

U [1]!L0(2t - to)
1

1

53p "2+ 0

-11

0
1 1

12 L

-

P t (2t - t )o_ 0 o

2pAL

Po 3

J+4A Ep

r2
1

01 3 [1 0]

1 PALO 1

P
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° [cos (010 - 1°) - cos cult]
wg

° [cos co3(t - to) - cos w3t]J
603

[cos wz(t - to) - cos wzt] + co3 [cos co3(1 - to) - cos wit]
z

- [cos 0)3(t - tp) - cos wit]
W3

L_! [cos wz(t - t°) - cos cult] + I [cos w3(t - t°) - cos cu3t)
(03 (03 J

(0)

To determine the dynamic loads in the lower and upper sections of the rocket
(elements 1 and 2) we use

U2- U1ay 2AEF =
L

-
poV

3E ! I - cos wzt - I - Cos cost
PLz'

wz C03

t <to

= Po pE
C

cos wg(t - tp) - cos (02t - cos (03(t - °) - cos wit]
Lz - w 0)3

t>to
and

P2) = 2AE U3 -
Uz

L

- Po r 3E !- 1 - cos wit + 1 - cos wit)
t < to

J PLzI wz C03

= Po r 3E r- cos w3(t - to) - cos wzt
w2J pLYL

COs w3(t - t°) - cos w3t
w3

t>

(P)
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13.15 RESPONSE DUE TO FORCED DISPLACEMENT
AT ONE END OF A UNIFORM BAR

We shall consider problems from the previous section except that instead of
applying a known force (thrust), we shall prescribe a known displacement
(see Fig. 13.7). For the known displacement we shall take

Ul = b12 (a)

where b is a constant. The axial displacements U3 and U3 will be determined
using the dynamic characteristics of the constrained system with Uz = 0. By
letting U = Ul and U = {U2 U3} and taking Ux(0) = 0 and U.,(0) = 0 we
can use the equation

U. = 0.5-'A-1 (sin [&(t - T)]f1 g(T) dT (13.70)

where all the required matrices have already been determined in Sec. 12.7.
The relevant results are summarized below:

SL = [wl W2] =,
VJ

La [1.611 5.629)

V/-21

Oe = 2 2

1 1

The generalized mass matrix X. is evaluated as follows:

c 1 pAL 4 1 c c pAL 2+ c 0le = OaTM::Os = [-c
1 12 [l 2] [1 1] 6 [ 0 2 - c

where c = \/2/2. Hence

lZe-1
12 [2-c 0 l

=
J7pAL 0 2+c

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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P3
t

U3 FIG. 13.7 Two-element idealization; specified
displacement U = U(t)

L

2

P2 U2
W

L
2

W

P, I U, =U, V)

We calculate next the equivalent force P. and the generalized force 9-e

IN = -MxvV xa - KtCY V L

pAL 1 2AE - 2 - - pALb
+

2AEbt2

12 [0] 2b- L
01bt-

6 L

pal fx
c

1 -pALb + 2AEbt2

6 L
I-C 1 0

c pALb 2cAEbt
6 + L

cpALb 2cAEbt2

6 L

0

(i)

Evaluating first the integrals in Eq. (13.70) with the aid of Table 13.1, we have

sin [W(t - T)]9d(T)f
6pALb(1-coscot)+2LEb (t2+2 cwwit

1 1 12 1

2

6

pALb (1 - cos w21) -
2cAE cb

12+
2 cos wet

z
2 2 22 22

(k)
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Substituting now Eqs. (b), (c), (g), and (k) into Eq. (13.70), we obtain

bt2 - Pbz 0.750 - 0.729 cos L1.611 tep

bt2 - PE 2 (1.000 - 1.030 cos 1.611 Le t
VP

+ 0.030 cos 5.629 Le t)
P

373

(1)

It may be interesting to compare the result for U3 with the exact solution
obtained by Laplace transforms operated on the differential equation for
longitudinal displacements. The result is

Us = bt2 - pbL2 + pbL$ 32 (-1)"+'
cos

2n - 1 E
E E ;s =i (2n - 1)2 (_2 JW

= bt2 - Lb 2(1.000 - 1.032 cos 1.571 Le t
P

e

+0.038cos4.713 E t

Comparing this result with our matrix solution, we note that even the two-
element idealization leads to a very good agreement with the analytical solution.

PROBLEMS

13.1 The uniform cantilever beam of flexural rigidity El and length / shown in Fig. 13.8a is
subjected to a dynamic load P applied at the tip. The variation with time of load P is shown in
Fig. 13.8b. Using only one element for the idealized system, determine the tip deflection as a
function of time. Determine also the bending moment at the built-in end. The effects of
shear deformations are to be neglected. The cross-sectional area of the beam is A and the
density of the beam material is p.

i
I

P

PO

t

(0)

rte. 13.8
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13.2 Derive an equivalent form of Eq. (13.70) when P. 0 0.

13.3 Solve the problem in Sec. 13.14 for a pulse loading represented by a half sine wave
(case 14 in Table 13.1).

FIG. 13.9

13.4 An idealized structural system, shown in Fig. 13.9, consists of two concentrated
masses m, and mg. The mass matrix for this system is given by

lb-sec'/ft

The frequencies of vibration are

to, = 30.0 rad/sec and ws = 60.0 rad/sec

while the corresponding modal matrix for the displacements U, and UQ is

P = rl _1J2 1

Assuming that the system has 5 percent of critical damping in the first mode and 10 percent in
the second mode, calculate coefficients in the damping matrix for this idealized system.



CHAPTER 14
STRUCTURAL SYNTHESIS

In Chap. I we described how a structural design is accomplished through a
series of design iterations, in which a trial design is chosen, analyzed, and then
modified by the designer after the examination of the numerical results. The
modified structure is then reanalyzed, the analysis results examined, and the
structure modified again, and so on, until a satisfactory design is achieved.
Since the designer's judgment and intuition are influencing factors in the re-
design process, and since only a small number of design iterations is practical,
there is no guarantee that this process will evolve a design of minimum weight
for all design conditions. Furthermore, such a process is very inefficient, and
there is clearly a need for an automated design procedure. The requirement
for the development of structural synthesis, in which the human designer is re-
placed by the computer, has become apparent particularly in aerospace structural
designs, where weight minimization is of utmost importance. Recent advances
in the fields of computer technology, linear and nonlinear optimization tech-
niques, and matrix methods of structural analysis have provided all the necessary
tools for the development of structural synthesis methods. Many papers
concerned with structural synthesis have appeared in recent years. Among
these perhaps the pioneering work by Gellatly and Gallagherll'.118 and also by

Schmit and his associates'°' '°4 deserves special attention. Computer programs
have been developed'" for the determination of structural-member sizes to
provide minimum weight under a set of specified load conditions and limit
restrictions on stress and displacement; however, the relatively long computa-
tional times at present have precluded the application of these programs to large
structural systems. This chapter is intended to provide the general concepts
involved in the optimization procedures.
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14.1 MATHEMATICAL FORMULATION OF
THE OPTIMIZATION PROBLEM

The general optimization problem is described by the following set of functions:

W = W(x1, ... (14.1)

T V 1 = V1(x1, ... ,x,,) = 0................ (14.2)

tVm 0

11 < D1(x,,... S Ll............... (14.3)

Is < 4 8(xi,

.

. . L.

The function W of the variables x1, ... , x,, is the so called criterion function,
which we seek to optimize. In our applications W represents the weight of the
structure, and the optimization will be interpreted here as the determination of a
set of design variables x1, ... , x which will make W a minimum. The vari-
ables x1, . . . , x may be related by a set of functional constraints ip1 = 0, ...
1Vm = 0 and, in addition, they are constrained by a set of regional constraints ci
such that (Di must be contained between a lower limit li and an upper limit L1,
where i = 1, . . . , s. A special case of the regional constraint is a side constraint
requiring that the variables xl, ... , x all be positive.

The functional constraints Vi = 0 are not normally used in structural appli-
cations. Functional constraints would require that either some or all of the
design variables be constrained by some relationship. In general, such design
variables as thicknesses and areas may be varied freely; however, if, for example,
aircraft machined skin panels are intended to have linear taper, the thicknesses of
plate elements within these panels will have to be constrained accordingly to
follow the linear taper. The regional constraints arise from the load con-
ditions and the imposed limit restrictions on stress and displacement. For any
given loading P the stress a, at some point in the structure is a function of the
design variables x1, . . . , x and the loading P, that is,

ai = ai(x1, ... ,X,,,P) (14.4)

Similarly, for a representative displacement u, we have

ui = ui(x1, ... ,xn,P) (14.5)

Thus, if we impose an upper and lower limit on the stress and displacement, we
must have

aL < ai(xl, ... ,x,,,P) < au (14.6)

uL < ui(x1, ... ,X,,,P) < uU (14.7)
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no. 14.1 Criterion function W, functional constraint W, = 0, and regional
constraints 11 < I, < L, and 12 < <As < L, in three-dimensional space.

where the superscripts L and U refer respectively to the lower and upper limit
values for stress or displacement. We can easily see that Eqs. (14.6) and (14.7)
are of the same form as the regional constraints (14.3), since P may be treated
here as a fixed parameter.

We describe next the geometry of the optimization problem. Since the
journey into the n-dimensional space necessary for this description is not easy to
visualize, we begin by discussing the three-dimensional problem first, for which
the governing equations will be taken as

W = W(x1,x2) (14.8)

V1 = p1(x1,x2) = 0 (14.9)

11 S D1(x1,x2) S L1 (14.10)

12 S b2(x1,x2) S L2 (14.11)

The x1 and x2 axes will form a basis plane over which we shall construct the
criterion function W, as shown in Fig. 14.1. The function W is therefore
represented by a surface in three-dimensional space. The functional constraint
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V1 = 0 describes a curve on the basis plane. This curve can be projected up-
ward onto the criterion surface to form a curve in space. A point moving
along this space curve will rise or fall depending on the shape of the function W.
The regional-constraint function represents a family of curves on the
basis plane. Two extreme curves can be plotted for the lower and upper limits
ll and L1, as shown in Fig. 14.1. From Eq. (14.10) it follows that the per-
missible region lies between the two extreme curves and includes points on the
curves. Similar curves can be constructed for the regional-constraint function
I2 in Eq. (14.11). By projecting the permissible regions upward onto the
criterion surface we shall map out the permissible region on the surface. The
lowest position of a point moving on the curve within that permissible region
corresponds to the optimum, the lowest value of W subject to the constraining
conditions (14.9) to (14.11).

It may be noted here that if we had an additional functional constraint V21 the
two constraints would intersect at one or more points on the basis plane, and
only the projections of these points upon the criterion surface would represent
permissible solutions. If no functional constraints were present, the whole
mapped-out permissible region would be used to determine the lowest point on
the criterion surface. Additional regional constraints could also be introduced.
Such additional constraints would merely reduce the permissible region on the
criterion surface. It should also be pointed out that the regional constraints
must be such that they do not exclude each other. For example, two con-
straints -10 x 103 S a{ 5 10 x 103 and 50 x 103 S a{ S 80 x 103 on the
stress a, are clearly inadmissible, since no solution for such constraints is
possible.

We can now return to our original problem with n variables. We introduce
n + I dimensions and the (n+ 1)st dimension will be used for plotting the
values of W. The criterion function Win this case is a surface in our n + I
space and is called a hypersuiface. The basis plane is now n-dimensional and is
referred to as a hyperplane. On this hyperplane we plot all functional con-
straints which form on it n-dimensional curves, referred to as hypercurves.
These curves can be projected up to the hypersurface to form (n + 1)-dimensional
hypercurves. The allowed regions formed by the regional constraints can then
be mapped out on the basis hyperplane and projected up to the criterion hyper-
surface in the (n + 1)-dimensional space. The problem then reduces to the
determination of the lowest value on the hypersurface within the permissible
region formed by the projections of the functional and regional constraints
from the basis hyperplane.

We may note from our three-dimensional example that the single functional
constraint rp, reduced the freedom of travel in two-dimensions within the per-
missible region on the basis plane to travel along the curve y,l = 0. In the
general case we have n degrees of freedom on the basis hyperplane, but as soon as
we specify a functional constraint y,,, we lose one degree of freedom. When we
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x2 FIG. 14.2 Criterion function W, functional
constraint w, = 0, and regional constraints
11 < 01 < L, and 1, < 02 < L. in two-
dimensional space.

specify n functional constraints, the intersections of these functions will reduce
the degrees of freedom to zero, and only a particular point, or possibly several
distinct points, will represent possible solutions. Therefore, the optimization
problem is said to degenerate if m z n, the constraints being too restrictive to
allow for any design variations.

An alternative method of presenting the optimization problem is to use the n-
dimensional space, instead of the (n + 1)-dimensional space, in which the values
of the criterion function are plotted on the (n + 1) axis. Thus the problem
depicted in Fig. 14.1 would require only a two-dimensional space. This
alternative representation is shown in Fig. 14.2. We note that the criterion
function is plotted there as a family of curves for constant values of W; that is,
the curves represent the equation

W(x1ix2) = We (14.12)

where W1 is a constant. Several such curves are shown in Fig. 14.2. The
functional constraint p1(x1,x2) = 0 is plotted, as before, on the x1x2 plane, and
the permissible region is mapped out on this plane by the regional constraints
(D1 and 'p2. In the previous representation we projected all curves from the
basis onto the criterion surface W(x1,x2) plotted on the x3 axis. Here the process
is reversed. The contours of constant values of W on the criterion surface are
projected onto the basis plane.

From Fig. 14.2 it is clear that for the constraints given by Eqs. (14.9) to
(14.11) the point 01 represents the position for the minimum value of W. If we
removed the functional constraint V1, any point within the quadrilateral like
region bounded by the regional constraints would represent a permissible design.
If the minimum value of W is the criterion, point 02 gives the required design
variables x1 and x2.

For the general case, the criterion function W is represented by a family of
hypersurfaces in the n-dimensional space, each hypersurface corresponding to
some constant value of W. Similarly the constraint functions p, and the regional



THEORY OF MATRIX STRUCTURAL ANALYSIS 380

constraints cI are represented by hypersurfaces in the n-dimensional space. The
optimization problem then involves a search within the permissible region
bounded by the constraint hypersurfaces to find a point corresponding to the
lowest value of the criterion function represented by a set of criterion hyper-
surfaces.

14.2 STRUCTURAL OPTIMIZATION

Structural optimization is defined as the selection of a combination of design
parameters which will allow the required functions to be performed by the
structure at minimum weight. The design parameters describe configuration,
member sizes, material properties, type of structure, etc. Naturally, it is not
economically feasible at present to include all these parameters in an automated
selection procedure. So far, in developing computer programs for structural
optimization attention has been confined mainly to the selection of member
sizes. The configuration parameters are the next logical choice for further
development.

If the design parameters are the cross-sectional areas and thicknesses of each
structural member, the weight of the structure is a linear function of the design
parameters. For such cases, the weight can be expressed by the equation

W= A1x1 + A2x2 + ... + Anxn (14.13)

where x1, ... , x,, are the design variables (parameters) and A1, . . . , A. are
constants depending upon material density and geometry of the structure.
The weight function W is therefore the criterion function of the optizimation
problem.' In n-dimensional space this function is represented by a family of
hypersurfaces, each hypersurface corresponding to some specific value of W.
In three-dimensional space, when only three design variables are considered, the
hypersurfaces reduce to a family of planes, as shown in Fig. 14.3.

The design variables x1, ... , x,, will be assumed to be independent, and there-
fore no functional constraints will be required. Only in special applications
will the functional constraints be necessary in structural-optimization procedures.

The selection of the design variables is subject to the following type of
constraints:

1. Geometric constraints: minimum and/or maximum areas or thicknesses
2. Stress constraints: maximum allowable stresses (either tensile or com-

pressive)
3. Displacement constraints: minimum and/or maximum values

These constraints form the regional constraints, and they are applied to all load
conditions for which the structure is designed. These constraints are re-
presented by constraint hypersurfaces. Since the stresses and deflections are,
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FIG. 14.3 Constant-weight planes (three-
dimensional space).

in general, nonlinear functions of the design variables, the constraint hyper-
surfaces are nonlinear functions of x1, . . . , x, Typical constraint surfaces in
the three-dimensional space are shown in Fig. 14.4, where additional constraints
are imposed on the minimum values of xt, x2, and x3. Thus in addition to the
main constraint surfaces we have side constraints in the form of planes parallel
to the coordinate direction. If the design point lies in the space above the

x2

FIG. 14.4 Typical constraint surfaces in three-
dimensional space (constraint surfaces x, =
const and x, = const omitted for clarity).
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constraint surfaces, the characteristic stress or displacement in the regional
constraint functions will lie within the specified limits. The point where the
constant-weight hypersurface touches the constraint hypersurface (or hyper-
surfaces) is the point for the minimum-weight design.

When constraints are imposed only on the stresses, we can use an iterative
procedure to redesign the structure so that each element reaches limiting stress
under at least one of the load conditions. Such a design is described as the
fully stressed design, and, in general, it is not far removed from the minimum-
weight design. The design variables for the iterative fully stressed design con-
verge to a vertex of the n hypersurfaces representing n constraints on the stresses.
Schmit901 has demonstrated that the fully stressed design for some loading con-
ditions may lead to an inefficient design, and for such cases the minimum-weight
design should be used. To decide whether the fully stressed design is an optimum
we can use a method proposed by Razani.27B

Details of the numerical procedures for obtaining the design variables for the
optimum design can be obtained from papers by Gellatly and Gallagher'17.118
and also by Schmit.301-304 Basically these papers propose different modes of
travel in the n-dimensional space to reach the minimum-weight point located on
the constraining hypersurfaces. Gellatly and Gallagher use a procedure made
up from three different modes: initial step (fully stressed design) used only once
or several times at the beginning of the computing, followed by repeated appli-
cation of the steepest-descent and side-step modes. Schmit used solely the
latter two modes of travel and describes his method as the method of alternate
steps. A paper by Razani279 gives an excellent account of the mathematical
formulation of both the fully stressed and minimum-weight design procedures.



CHAPTER 15
NONLINEAR
STRUCTURAL ANALYSIS

Two types of nonlinearities occur in structural problems. The first type is
referred to as material nonlinearity and is due to the nonlinearly elastic and
plastic or viscoelastic behavior of the structural material. The second type is
referred to as geometric nonlinearity, and it occurs when the deflections are
large enough to cause significant changes in the geometry of the structure, so
that the equations of equilibrium must be formulated for the deformed con-
figuration.

The matrix analysis methods developed for linear structures can be extended
to include the above-mentioned nonlinearities. Both the matrix displacements
and force methods of analysis can be utilized for that purpose. Because of the
presence of nonlinear terms, solutions to the governing matrix equations can no
longer be obtained explicitly, as with linear structures, and consequently we
must use iterative procedures. As a by-product of the large-deflection matrix
analysis we can also formulate the eigenvalue equations for structural in-
stability. Thus buckling loads for structures idealized into an assembly of
discrete elements can be determined, an important consideration in designing
lightweight structures. Furthermore, creep behavior of structures, including
creep buckling, can be analyzed by matrix methods.

This chapter presents only the general principles involved in extending
matrix methods into the nonlinear regime. For further details of matrix
methods of analysis of nonlinear structures the extensive literature on this
subject should be consulted.
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15.1 MATRIX DISPLACEMENT ANALYSIS
FOR LARGE DEFLECTIONS

When large deflections are present, the equations of force equilibrium must be
formulated for the deformed configuration of the structure. This means that
the linear relationship P = KU between the applied forces P and the displace-
ments U can no longer be used. To account for the effects of changes in
geometry as the applied loading is increased we may obtain solutions for the dis-
placements U by treating this nonlinear problem in a sequence of linear steps,
each step representing a load increment. However, because of the presence of
large deflections, strain-displacement equations contain nonlinear terms, which
must be included in calculating the stiffness matrix K. No discussion of these
nonlinear terms in the strain-displacement equations will be given here, and for
their derivation the interested reader is referred to standard texts on the non-
linear theory of elasticity.

The nonlinear terms in the strain-displacement equations modify the element
stiffness matrix k so that

k=kE+ka . (15.1)

where kF is the standard elastic stiffness matrix calculated for the element
geometry at the start of the step and ka is the so-called geometrical stiffness
matrix, which depends not only on the geometry but also on the initial internal
forces (stresses) existing at the start of the step. Alternative names for the
geometrical stiffness matrix are the incremental stiffness matrix and the initial-
stress stiffness matrix. The elastic and geometrical stiffness matrices are calcu-
lated for each element and then assembled into the total stiffness matrix

K=KF+Ka (15.2)

using the conventional procedures established for the linear analysis in Chap. 6.
The incremental displacements and internal (element) forces are calculated

in the conventional manner for each load increment. If necessary, the elastic
constants used in the elastic stiffness matrix can be modified for each step.
Total displacements for the final values of the applied loading are then obtained
by summing the incremental values. The incremental step procedure used in
this application is presented symbolically in Table 15.1. It should be noted
that K(;(0) = 0 since the geometrical stiffness matrix is proportional to the in-
ternal forces, which are zero at the start of step 1.

The concept of incremental steps in treating the large-deflection problem by
the matrix displacement method was first given by Turner et al Sao Detailed
discussion of the analysis of pin jointed trusses, beam structures, and plates was
given by Martin.211.216 Argyris14,18 has developed the general concept of
geometrical stiffnesses extensively and applied it also to plate and shell elements.
A general method of determining geometrical stiffness matrices for arbitrary
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TABLE 15.1 INCREMENTAL STEP PROCEDURE FOR THE DISPLACEMENT

METHOD

Step Stiffness
Incremental

displacements Element forces

I KB(0) + Ko(0) AU1 S1

2 KB(U1) + Ko(Ul) AU, Ss

3 Ka(U,) + Ko(U,) AU, S,

..................

n KB(Un-1) + Ko(U2-1) AU. Sn

71

Total displacements Un = DU,
i=1

structural elements has been given by Przemieniecki.387 This method allows
for a systematic inclusion of different nonlinear terms from the strain-displace-
ment equations and is considerably simpler than the conventional techniques
requiring the determination of strain energy, as described in this text.

As in any piecewise linear procedure applied to a nonlinear problem, the
accuracy of the total value of displacements and internal forces increases as the
number of linear steps is increased. It should be mentioned, however, that in
some problems even relatively large linear steps may result in a good approxi-
mation to the true nonlinear behavior of the structure.

step in Table 15.1 we have

U1 = [K (O)]-'P
_ [KE(0)1-1AP* (15.3)

In Eq. (15.3) the external loading P is expressed as

P = AP* (15.4)

where A is a constant and P* represents the relative magnitudes of the applied
forces. Since the geometrical stiffness matrix is proportional to the internal
forces at the start of the loading step, it follows that

Ko = )LK*o (15.5)

where K*o is the geometrical stiffness matrix for unit values of the applied
loading (A = 1). The elastic stiffness matrix KE can be treated as a constant
for quite a wide range of displacements U. Hence we may write

(KE + 2K*a)U = AP* (15.6)

The displacements U may therefore be determined from

U = (KE + AK*Ci)-1AP* (15.7)
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From the formal definition of the matrix inverse as the adjoint matrix divided
by the determinant of the coefficients we note that the displacements U tend to
infinity when

EKE + AK* I = 0 (15.8)

The lowest value of A from Eq. (15.8) gives the classical buckling load for the
idealized structure. We denote this value as Acrtt, and the buckling loads are
found from

Porst = aritP (15.9)

It should be noted that several loads may be applied simultaneously in P.
Thus problems involving biaxial compression can be investigated. Several
simple examples of the analysis of structural stability will be given to illustrate
the application of this technique.

15.2 GEOMETRICAL STIFFNESS FOR BAR ELEMENTS

We consider next the pin jointed bar element shown in Fig. 15.1. Under the
action of applied loading the bar is displaced from its original location AB to
A'B'. The displacements in the x and y directions respectively of the end A are
ul and u2 while those of the end B are u3 and u4. The cross-sectional area of the
bar is A, its length is 1, and the Young's modulus of the bar material is E.

The strain e, in the direction of the bar axis must be determined from the
large-deflection strain-displacement equation

e:x
= au" + I (aU, 2

(15.10)
ax a TX_

where the second term is nonlinear. The displacements ua and u vary linearly
along the length, and they are obtained from

r t
u1

11x11 l- S 0

t
0t U2

1UJ 0 1-5 0 S U3

u4

FIG. IS.1 Large displacements on a bar element.
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where = x/l. Hence

au. I

ax 1
(-u1 + u3)

au 1

and ax = (-u2 + u4)

(15.12)

(15.13)

The strain energy U; stored in the bar with a linear stress-strain law (Hookean
elasticity) is determined from

rI
U ,

9

EE.2dV= Z E J
a 2dx

0

_ AE f 'rau. 1 au 2 2
2 JoLdx +2\8x) dx

_ AE f 1L(au\ 2 + aux auV 2 + _'(au" ° dx (15.14)
2 Jo au) ax (ax) 4ax

Substituting Eqs. (15.12) and (15.13) into the strain energy expression (15.14)
and then neglecting the higher-order term (au lax)4, we have that

U{ = f(ui2 - 2u1u3 + use) dx -}- 5(u3 - u1)(u22 - 2u2u4 + u42) dx
212 2110

= AE
(u12 - 2u1u3 + use) + 2E (us - u1)(u22 - 2u2u4 + u42) (15.15)

We may note that even for relatively large deflections the quantity AE(u3 - u1)/I
may be treated as a constant equal to the axial tensile force in the bar. Hence

introducing

AEF = I (us - u1) (15.16)

we have that

Us =
TAE

(u12 - 2u1u3 + u32) + 1 (u22 - 2u2u4 + u42) (15.17)

Castigliano's theorem (part 1) is applicable to large deflections provided
appropriate expressions for the strains are used. Hence, using Eq. (15.17), we
obtain the element force-displacement relations

s1 = dU1 = AE
(u1 - us) S2 =

aUj = F
(u2 - u4)

aul au2
= -

S3 = au3 =
AE

(-ul + us) S4 = a 4t = 1
F

(-u2 + u4)

(15.18)
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Collecting Eqs. (15.18) into a single matrix equation, we obtain

SI 1 0 -1 0 ul 0 0 0 0 ul

S2 AE 0 0 0 0 u2 F 0 1 0 -1 u2-L

+ (15.19)
53 1 -1 0 1 0 u3 1 0 0 0 0 u3

_SL

whic

S =

hmay b

(kE +

- 0 0 0 0

e written symbolically

ko)u

u

as

0 -1 0 1 u4

= ku (15.20)

Thus we can see clearly that the total stiffness of the bar element consists of two
parts, the elastic stiffness kE and the geometrical stiffness k0. The elastic
stiffness matrix kE is the same as that used in the linear analysis. The geo-
metrical stiffness ko is given by

0 0 0 0

_ 0 1 0 -1
k°

F
1 0 0 0 0

0 -1 0 1

(15.21)

It should be noted that kp either increases or decreases the direct stiffness co-
efficients (diagonal terms), depending on the sign of the force F.

15.3 GEOMETRICAL STIFFNESS FOR BEAM ELEMENTS

The displacement distribution on a beam element is given by [see Eq. (11.30)]

1 2 3 4 5 6

ua1 r1 - i 6( _ 2), (-1 4 - 3 6(-i I (Zs - 3ss)r'n1

Curl - L 0 1 -3 s+2.5 2V + 3)I 0 V -2' e')

us

LucJ

(15.22)

where u1, ... , u8 are the element displacements shown in Fig. 15.2. In calcu-
lating the strain energy U1 we shall neglect the contributions from the shearing
strains. Thus only the normal strains e. will be included. These strains for
large deflections on a beam in bending are determined from

aua a2u, 1(aur,2

= ax - az2 y + z ax
(15.23)
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FIG. 15.2 Positive directions of displacements
on a beam element.

where y is measured from the neutral axis of the beam and uo denotes the u.:
displacement aty = 0. We use Eq. (15.23), and the strain energy UU is given by

Ui = J'e2dV

_ E rauo a2u I (aU.)2]2

2 Lax axe y + 2 ax dV

E f aup
2

a2U., 2 1 auy 4 auo a2uv

2 0 A L \ ax + `axe) y2 + 4 \ax) -2 ax axi

- ax Gax )y + )2J dx dA

The higher-order term 1(aul ax)4 can be neglected in the above expression.
Integrating over the cross-sectional area A and noting that since y is measured
from the neutral axis, all integrals of the form f y dA must vanish, we have that

EA f I( auo 2 El I(a2Uv 2 EA [I auo(au,,
U,

2 Jo
ax) dx + 2 0 \ axe) dx + 2 A ax \ ax 1

dx (15.24)

where I denotes the moment of inertia of the cross section. We may note that
the first two integrals in (15.24) represent the linear strain energy while the third
integral is the contribution from the nonlinear component of the strain.

From Eq. (15.22) we obtain

auo _ 1

ax 1
(-Ul + u4) (15.25)

au. 1

ax 1
[6(- + V)U2 + (1 - 4 + 6( - PA + (-2S + 352)/u8)

(15.26)

a2u" _ 1 [6(-1 + 2(-2 + 3 )1u3 + 6(1 - 2se)us + 2(-1 +
12

(15.27)
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Substitution of Eqs. (15.25) to (15.27) into (15.24) and integration leads to

EA
U, =

21
(u12 - 2u1u4 + - u42)

+
2E

13

+I (3u22 12u32 + 3u52 + 12U2 32 + 31u2u3 - 6u2u5 + 31u2ue

- 31u3u5 + 12usu6 - 31u5us)
EA+

12
(u4 - ui](*u22 + s12u32 + u52 i612uo

+ 3'-01u2u3 - 1-u2u5 + -llo-lu2u6 - "Olu3u5 - $012usu6 - 101u5u6) (15.28)

As in the case of the pin jointed bar, we may introduce

F = A (u4 - u1) const (15.29)

and apply Castigliano's theorem (part 1) to the strain energy expression (15.28).
This results in the following element force-displacement equation

r A12

Si
1 I ul

S2 2 0 12 Symmetric U2

S3 3
El

0 61 412 u3

S4 13 A12A12 U4
4 0 0

S5 I I
U5

5 0 -12 -61 0 12S6 LuoJ
6 0 61 212 0 -61 412

1 2 3 4 5 6

1 I -0

6
2 0 Symmetric

5 ul

2
U2

3 0 1 12

F 10 15 U3

4 0 0 0 0 U4
(15.30)

-6 -l 6 US
5 0

05 10 5
_u6

6Ll -l2
0

-1 2 12
0

]
10 30 10 15

1 2 3 4 5 6
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which again may be written symbolically as

S=(k,+k°)u
The elastic stiffness matrix kF is the conventional stiffness matrix obtained in
Chap. 5 [see Eq. (5.121)], while the geometrical stiffness matrix is given by

11 0

2

3

k°=
F7

4

5

0

0

6 Symmetric
5

1 2 12

10 15

0 0 0 0

0
-6 -1 0 6

5 10 5

(15.31)

2L1 -12
0

-1 2

1

6 0
10 30 10 155

1 2 3 4 5 6

If instead of the expression for the slope 2u.,,/ax in (15.26) we assume that

axLu

~ 1 (us -
u2) (15.32)

then the calculation of the nonlinear term in the strain energy expression (15.24)
can be considerably simplified. Such an assumption implies the use of an
average constant slope over the whole length of the element, and this can be
justified only if the size of the element is small in relation to the overall length
of the actual beam structure. When this assumption is used, the simplified
geometrical stiffness matrix becomes

1 0 0 0 0 0 0

2 0 1 0 0 -1 0

F3 0 0 0 0 0 0

kO 1 4 0 0 0 0 0 0

51 0 -I 0 0 1 0

(15.33)

6 L0 0 0 0 0 0J
1 2 3 4 5 6

The above geometrical stiffness matrix is usually referred to as the string
stiffness.
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15.4 MATRIX FORCE ANALYSIS FOR LARGE DEFLECTIONS

The linear matrix force method of structural analysis can be extended to non-
linear structures using the concept of fictitious forces and deformations. The
idea was proposed by Denke in a report of Douglas Aircraft Company 363 The
basic concepts involved and the details of the analysis for structures idealized
into bars and constant shear flow panels were presented by Warren.335 An
equivalent theory was developed independently by Lansing, Jones, and Ratner.198
Griffin'28 and Durrett84 analyzed pin jointed space frameworks using the concept
of fictitious forces and deformations. A detailed description of the method is
also given by Argyris.19

The concept of the fictitious forces and deformations will be illustrated for a
pin jointed bar element. A typical element with large deflections is shown in
Fig. 15.3. If the deflections are small (strictly speaking the deflections should be
infinitesimal), the undeformed configuration AB is used to determine the internal
force F' in the element. If the deflections are large, the deformed configuration
A'B' must be used to obtain the element force F. It is clear from Fig. 15.3 that
if the angle 0 is not too large, then

F= F' (15.34)

The forces F have transverse components, and therefore in order to satisfy
equilibrium in the deformed configuration we may introduce external forces P.
given by

P4,
N F'0 = F'(u4 - u2)

1 (15.35)

where 0 is the angle of rotation of the element such that sin 0 0 and 1 is the
element length. Similarly, because of rotation of the element there will be an
apparent contraction of the element, as indicated in Fig. 15.4. This contraction
is given by

vm ~ -J102 = - I (u4 - U02 (15.36)
21

The transverse forces P40 are described as the fictitious forces, and the con-
traction vm is described as the fictitious deformation. In a similar manner
fictitious forces and deforrftations can be obtained for other elements.

B'

v2 FT F'----

PIp

A'f_

A

e P0

a
a

F

F'

U4

FIG. 15.3 Fictitious forces P41 on a pin jointed bar element.



NONLINEAR STRUCTURAL ANALYSIS 393

A'

B.

114-114,
FIG. 15.4 Fictitious defor-
mations vo on a pin jointed
bar element.

U2

t A B
1_q

The fictitious forces P0 and fictitious deformations vv can be regarded as
additional external loading to be applied to the undeformed structure. These
fictitious forces and deformations, when applied together with the actual loading,
will cause the linear-theory analysis to give the correct results for large de-
flections. Since both P0 and vo are nonlinear functions of the displacements,
the matrix analysis leads to nonlinear equations, which must be solved by
iterative techniques.

The element forces and deflections can now be written as

F = FP(P + P0) + FF(VT + va) (15.37)

and r = .°a:P(P + P0) + . V(vT + v0) (15.38)

The matrices FP and F,, represent element forces due to unit values of external
loads P and thermal (or initial) deformations VT, respectively. The matrices
JvP and F represent structural deflections due to unit values of P and vT. The
deflections r refer here to all displacements necessary to describe the fictitious
forces PD and deformations vm. The fictitious force matrix Pm represents the
resultant of all external fictitious forces acting at each joint. Consequently, the
number of rows in the matrix P must correspond to that of PO even if only a few
external loads are actually applied. The fictitious-deformation matrix vm is
simply a column matrix of fictitious element deformations. The matrices
FP, F,,, .FP, and 5,, can be determined by linear force or displacement methods.
The matrices P0 and vm are dependent on the deflections r, and because of this
dependence Eqs. (15.37) and (15.38) are nonlinear and must be solved by iterative
methods. This approach, however, is impractical, and it is preferable to
eliminate the element forces F from Eqs. (15.37) and (15.38) and formulate
equations for the deflections r.

Since the fictitious forces P0 are linear functions of the element forces F, we
must have that

Pm = FF (15.39)

where r is a matrix of fictitious forces due to unit values of the element forces
F. Substitution of Eq. (15.39) into (15.37) and solution for F leads to

F = (I - FPr)-1[FPP
+ F,(vT + v0)A (15.40)
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Subsequent substitution of (15.39) and (15.40) into (15.38) results in the following
equation for the deflections:

r= .5PP + ,5FPr(I - FI>r)-'[FPP + FV(vT + v,)] + J`v(vT + vl) (15.41)

Warren336 has demonstrated that elements in FPr are small compared with
unity, and therefore the inverse in (15.41) is given by the convergent series

(I - FP r)-1 = I + FP r + (FP r)2 +... .

Substituting Eq. (15.42) into (15.41), we obtain

r = JPP + fflrp(rFp + rFPrFp + rFPrFPrFP + )P
+ S p(FFti + rFpFF + rFprF1>rF.v + ...)(VT + v0)

+ gv(vT + v-P)

(15.42)

(15.43)
Introducing now

pop = rFP (15.44a)

which is a matrix of fictitious forces resulting from unit values of external forces,
and

Pmq = rFm (15.44b)

which is a matrix of fictitious forces due to unit values of element deformations,
we can simplify Eq. (15.43) to read

r = y P(I + Pmp + Pmp3 + ...)P

+ [Fe, + J 'Al + Pmp - Pm,2 + ...)P ](vT + vm) (15.45)

As an approximation we may delete all terms with powers of POD, higher than the
first and also the products PmpP09. Hence Eq. (15.45) becomes

r = .fP(I + PmpP + (Jv + JPP,.)(vT + v0) (15.46)

We may note that in accordance with the approximations of this theory [see
Eq. (15.35)] both PmpP and PO,vT are linear functions of the deflections, and
therefore we may introduce the following definitions:

PmpP = Pm p,r (15.47)

and PmnvT = PD,rr (15.48)

where P'Vpr is defined as the matrix of fictitious forces due to unit values of the
deflections r when the loading P is applied and P,,, is the matrix of fictitious
forces due to unit values of the deflections r when the thermal (or initial) de-
formations vT are applied.
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Substituting now Eqs. (15.47) and (15.48) into (15.46), we obtain

[I - - P(PMPr + P,D )]r = F PP + (.5v + .V PPm)v , (15.49)

Hence, solving for r, we have

r = [I -'P(PmPr + P11,,r)r1['FP1) + " T + (moo + .FpP0.)v01 (15.50)

Equation (15.50) is nonlinear in r since both Pmo and vm are functions of r.
The elements of matrix Pmo are proportional to r, while those of vo are pro-
portional to squares of the differences of displacements. Equation (15.50) can
be solved by iteration and is much more convenient to handle than Eqs. (15.37)
and (15.38), where we had not only the unknown deflections r but also the
element forces F. Once the deflections r have been calculated, the element
forces can be found from Eq. (15.37).

From Eq. (15.49) we obtain the linear stability equation

[I - Fp(Popr + Ponr)]r = 0 (15.51)

In solving for the eigenvalues of this equation it is convenient to introduce

Pmts = APP@Pr

and Pmdr = A,,Pmor

(15.52)

(15.53)

where AP and A are constants, while Ps,, are the fictitious forces due to unit
values of the deflections r when a reference loading is applied and Pmor are the
fictitious forces due to unit values of deflections when some reference thermal
(or initial) deformations are applied, i.e., deformations caused by some reference
temperatures. Hence the eigenvalue equation (15.51) may be rewritten as

(I - 2 P.°F ' Pr - AV.` PPm*v)r = 0 (15.54)

The determinant

PPOPr - All- PPmnrI = 0 (15.55)

is therefore the stability criterion formulated by the matrix force method.
The smallest values of AP and 2, from Eq. (15.55) give a functional relationship
specifying the stability boundary for the combined mechanical applied loading
P and thermal loading vT. This includes two special cases, buckling due to P
when temperature is zero and buckling due to the temperature distribution
alone when P = 0.

15.5 INELASTIC ANALYSIS AND CREEP

The incremental step procedure used for the nonlinear matrix displacement
analysis is ideally suited for structures with inelastic material properties.



THEORY OF MATRIX STRUCTURAL ANALYSIS 396

Applications of the matrix displacement method to elastoplastic problems are
discussed by Gallagher, Padlog, and Bijlaard,10° and also by Besseling44 and

Pope.258.25° Extension of the method to plastic-hinge design is discussed by
Livesley.208

The matrix force method can be utilized for the analysis of inelastic structures
by suitably modifying the element relative displacement-force equations. These
equations are of the form

v= IF+VT+vl (15.56)

where both the initial deformations yr and the flexibility f are functions of the
element forces F. The analysis is normally carried out for the stress-strain curve
idealized into a series of straight lines in order to simplify computer program-
ming of Eq. (15.56). Because of the nonlinearities an iterative method of
solution must be used, and essentially the problem involves the determination of
the initial deformations vl and the tangent flexibilities f for each element.
Details of such an analysis including the description of a computer program are
given by Warren335 and Argyris.14

The analysis of creep and creep buckling can he conveniently carried out by
matrix methods. Since creep is a time-dependent process, the matrix analysis for
creep is based on a stepwise approach utilizing increments of time. The de-
formations due to creep from the preceding time increment can be considered
as initial deformations vt in the time increment for which the stress distribution is
being calculated. This stress distribution can then be used to determine the
additional creep deformations which will occur at the end of the time increment.
These additional creep deformations are then utilized to evaluate initial de-
formations for the next time increment and so on. If nonlinear matrix analysis
is used, an iterative cycle can be introduced within each time increment. The
success of the creep analysis, however, depends largely on an accurate knowledge
of the creep law and the establishment of a valid relationship for cumulative
creep under conditions of varying stress and temperature.

15.6 STABILITY ANALYSIS OF A SIMPLE TRUSS

DISPLACEMENT METHOD

As an example of the stability analysis by matrix methods we shall consider
the simple truss shown in Fig. 15.5. The cross-sectional areas of the truss
members are A, and Young's modulus is E. The external loading consists of a
vertical force P applied at node 1. We shall use first the displacement method of
analysis to determine the load P which will cause the truss to become unstable
in its own plane. Subsequently the same problem will be solved by the matrix
force method using the concept of fictitious forces.
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Fic. 15.5 Truss geometry and loading.

41

The elastic stiffness matrices for elements 1 and 2 are
1 2 3 4

1 0 0 0 01

k
0 1 0 -1 (15.57)

E
1 3 0 0 0 0

4 0 -1 0 1-

5 6 1 2

5 r 1 1 -1 -11
( 2 ) = 12 AE6 1 1 -1 -1

(15.58)
4 1 1 -1 -1 1 1

2 -1 -1 1 1

where the row and column numbers refer to the displacements as shown in Fig.
15.5. It can be demonstrated easily that the element forces obtained from the
conventional linear analysis are given by

F"l" = P and F12> = 0 (15.59)

Hence it follows from Eqs. (15.21) and (15.59) that the geometrical stiffness
matrices are given by

1 2 3 4

1 1 0 -1 0

P2ll 0 0 0 0
60)(15

ka -
13 -1 0 1 0

.

4 0 0 0 0

and ko(2) = 0 (15.61)
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The element stiffness matrices can now be assembled to form KE and K° for the
entire structure. Hence after deleting the rows and columns corresponding to
displacements 3 to 6, we obtain

1 2

1/2AEI 1 1

(15.62)
4 1 2[1 I +2-,/2-1

1 2

pl 1 0
K°

120 0
1 2

11 1 0
whence

2 0 0

(15.63)

(15.64)

Substitution of Eqs. (15.62) and (15.64) into the stability determinant (15.8)
results in

AE 2 AE
4 1 +l 4 1

AE V AE (I + 2-)
4 1 4 1

= 0 (15.65)

from which we obtain the buckling load

2V2-1
pcrtt = 2crit X 1 = -

7
AE

(15.66)

This agrees with the exact result obtained by Timoshenko and Gere. The
negative value indicates that the buckling load is in the direction opposite to that
shown in Fig. 15.5.

FORCE METHOD

Since there is no thermal loading applied to the truss, vT = 0, and the stability
criterion from Eq. (15.55) becomes

3 I - 2p.`FpP,rr I = 0 (15.67)

The flexibility matrix .5wp can be obtained by the force method, but since we
have already calculated the corresponding stiffness KE, it will be more expedient
to use

.rp=KE 1

- { 4 AE[1 1 -1- 21 2]j AE [1

+-1
11

(15.68)
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P

(a) (b)

FIG. 15.6 Fictitious forces PV on a two-bar truss with a vertical force P. (a)
r,=1; (b) r2=1.

We also note from the previous section that the linear analysis gives F11) = P
and FI21 = 0. Therefore with the aid of Fig. 15.6 it is easy to see that the
matrix of fictitious forces due to unit values of the deflections when the loading
is applied is given by

-P 0
Por. = (15.69)

0 0

0
whence P*pr = 1 (15.70)

0 0

Multiplying out the product and then substituting into the stability
determinant (15.67), we obtain

1 -}- AE (1 + 21/2) 0

-AP
AE

= 0 (15.71)

1

The root of this determinant is

AE 21r2-1
RP AE

1 + 2/ 7

which agrees with the result obtained by the displacement method.

(15.72)
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15.7 STABILITY ANALYSIS OF A COLUMN

As a second example we shall consider stability of a fixed-pinned column shown
in Fig. 15.7. The column length is L, the flexural rigidity is El, and the cross-
sectional area is A. For the purpose of the analysis the column will be idealized
into two elements. Only the displacement method of analysis will be illustrated.

Using the numbering scheme for deflections in Fig. 15.7, we obtain the
following stiffness matrices from Eq. (15.30):

IF 0
2 0 12 Symmetric

0 61 412

- 0 0
(15.73)

3
kE(1) = EI

13 4

4

5

kE(2) = E3
6

/3
7

8

5 0 -12 -61 0 12

6L 0 6/ 212 0 -61 412
1 2 3 4 5 6

0 12 Symmetric

0 61 412

-0 0 0

0 -12 -61 0 12

9L 0 6/ 212 0 -61 412]
4 5 6 7 8 9

(15.74)

FIG. 15.7 Column with one end fixed and
the other pinned.
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A12
where ¢ = I

1 0

2 0 5 Symmetric

3 0
1 212

10 155

kauW = -P 4 0 0 0 0

1 5 0 -6 -1 0 6
5 10 5

5

6

ko 2> = -P
1 7

8

9

61 0 1 -12 0 -1 212

L. 10 30 i i5J
1 2 3 4 5 6

4 E0 7

0 5 Symmetric

1 212

10 15
0

0 0 0 0

(15.75)

(15.76)

(15.77)

0 -6 -1 0 6

5 10 5

L
1 -12 -1 212

0 10 30
0

l0 15

4 5 6 7 8 9

The stiffness matrices KB and KG can now be assembled from the element
stiffnesses. Eliminating rows and columns 2, 7, 8, and 9 corresponding to zero
displacements on the column, we obtain, after some rearrangement,

I -0 0 0 0

4 -0 20 0 0 0

KB=113 0 0 412 -61 212 (15.78)

5 0 0 -61 24 0

6 0 0 212 0 812

1 4 3 5 6
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Ir0 0 0 0 0

4 0 0 0 0 0

2
2

-1 -l2
0 0

151 10 30

0 0 -1 12 0

10 5

30 15

1 4 3 5 6

(15.79)

-2
6 0 0 0 412

Noting that K*o is equal to Ka for P = 1, we can set up the stability determinant
KE + A Ka I = 0. This leads to

I -0 0 0 0

4 20 0 0 0

3 0 0 412-
2.114

-
-61+ -- 212+ 1--

T5 TO El 30 E1
= 0 (15.80)

1 W 12 A12
5 0 0 -61+

24 010 El 5 EI
1 A14 4 A14

6 0 0 212 -I
30 EI

0 812
15 EI

1 4 3 5 6

To simplify subsequent calculations we may divide rows and columns 3 and 6 by
1 and introduce

z

1A= 1 (15.81)
EI

so that the determinant becomes

0 -0 0 0 0

-41 20 0 0 0

0 0 2(1 - 15) -6-}
s
14 2+30

= 0 (15.82)

0 0 -6+10 12(2-5) 0
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Expanding this determinant, we obtain a cubic equation in ,u

3a3 - 220,u2 + 3,8404u - 14,400 = 0 (15.83)

The lowest root of this equation is

y = 5.1772 (15.84)

This value is only 2.6 percent higher than the exact value 5.0475. Thus we have
demonstrated that even with only two elements excellent accuracy is obtained for
the buckling load. It should also be noted that the effect of shear deformations
on the buckling load can be investigated by modifying the elastic and geometrical
stiffness.

15.8 INFLUENCE OF A CONSTANT AXIAL FORCE
ON TRANSVERSE VIBRATIONS OF BEAMS

As a further example of the application of the matrix displacement analysis for
large deflections we shall determine the influence of an axial load in a beam
column (Fig. 15.8) on the frequency of transverse vibrations. Both ends are
pinned, and the column is subjected to an axial load P. The positive load P
corresponds to tensile axial load in the beam. The flexural rigidity of the beam
is El, the beam length is 1, the cross-sectional area is A, and the density of the
material is p. For simplicity of presentation of the analysis the beam will be
idealized into only one element. Naturally, in any practical application more
elements would have to be used for this problem. Since the transverse and
longitudinal displacements are uncoupled, we may use only transverse de-
flections and rotations in setting up the equations of motion.

I

1W
FIG. 15.8 Vibrations of a beam column with both ends
pinned.
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Using the numbering system indicated in Fig. 15.8, we obtain the following
stiffness matrices:

I 12 61 -12 61

EI 2
K _ 61 412 -61 212

E
!3 3

4

-12
L 61

1

-61

212

2

12

-61
3

-61

412

4

(15.85)

6 1 -6 1
I

1
5 10 5 10

1 2 -1 -/2
2

2

1P 10 15 10 30 (15.86)Ka= 1
-6 -1 6 -1

3

5 10 5 10

4 L
1 -12 -1 2 12

10 30 10 1 55

1 2 3 4

The mass matrix for the corresponding degrees of freedom is

1 156 221 54 -131

pAl 2 221 412 131 -312_M (15.87)
420 3 54 131 156 -221

4 -131 -312 -221 412

1 2 3 4

For large deflections the equation of motion of a freely vibrating system is
obtained by replacing K with K. -I- Ka. Hence we have

(-(o2M + KE + Ka)q = 0 (15.88)

Substituting Eqs. (15.85) to (15.87) into (15.88) and deleting rows and columns
corresponding to the transverse deflections I and 3, we obtain

-312 EI2 412 212
p 2

412]+134[2,2 412]+1
4

2 4 2 4

2 12

15

-12
30 92

[ ]
0

-12 2
2 94

130 15

2 4 (15.89)
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Next the characteristic equation

-oo2M+Kl;+Kul =0

can be formulated from Eq. (15.89), and this leads to

4-}- # - b02 - I - E ) 2
40

1 -0
2 - 1,0u -1 -f 1001 4 + 3-.1g02

where

and
EI

(15.90)

(15.91)

(15.92)

(15.93)

Evaluating the determinant (15.91), we get

(2 + au - -6'02)(6 + id/v - az602) = 0 (15.94)

from which two eigenvalues are obtained

012 = 120(1 + zu) (15.95)

022 = 2,520(1 ± Jai) (15.96)

Hence the two natural frequencies derived in this simple analysis are

2co., = (-) 10, = 10.954(pA14)
(1 + 12E1)1

(15.97)

and w2 = (;i)02 = (1 +
¢

(15.98)

From Eqs. (15.97) and (15.98) it is clear that the frequencies increase with
increasing tensile load P and decrease with increasing compressive load (when
P is negative). The influence of the axial load is greater on the lowest fre-
quency than on the higher frequency. When the axial load is

P = -12 EI (15.99)

the first frequency wl is reduced to zero. This condition corresponds to buckling
of the column. It may be noted that the value of the buckling load given by
Eq. (15.99) is 21.6 percent higher than the exact value Tr2EI/12. However, had
we used more elements, as in the example in Sec. 15.7, we should have obtained
much better accuracy. The frequencies given by Eqs. (15.97) and (15.98) are
11.0 and 26.7 percent higher than the exact analytical values for the first and
second frequency of a beam with both ends pinned and with P = 0.
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no. 15.9 Variation of frequency with axial P for a column with both
ends pinned.

A plot of Eq. (15.95) is shown in Fig. 15.9. This demonstrates clearly that
frequency measurements for varying axial loads can be used in nondestructive
testing to predict buckling loads.

PROBLEMS

15.1 The truss shown in Fig. 15.5 is subjected to both horizontal and vertical loads applied
at the free node point. Determine the functional relationship between the two loads for
instability using (a) matrix displacement method and (b) matrix force method.

P

MV1119WI, FIG. 15.10



NONLINEAR STRUCTURAL ANALYSIS 407

15.2 Determine the natural frequency of vibration of a uniform column free at one end
and built-in at the other and subjected to a constant axial load P, as shown in Fig. 15.10. The
effects of shear deformations must be included in the derivation. Use matrix formulation
based on one element only.

15.3 Derive the string stiffness for a beam element given by Eq. (15.33).

I
M

I
3

6
3

a

a

FIG. 15.11

15.4 Vibrations of cables having no bending stiffness can be analyzed by introducing the
geometrical string stiffness of bar element. Determine natural frequencies of vibration of a
pre-tensioned cable idealized into three elements, as shown in Fig. 15.11. The amount of
tension is T, and the weight of the cable per unit length is in.





APPENDIX A
MATRIX ALGEBRA

Al INTRODUCTION

Matrix algebra represents mathematical operations performed on a group of
algebraic or numerical quantities in such a way that a single symbol suffices
to denote the whole group. These groups are represented by matrices, which
may be thought of as a type of algebraic shorthand notation. The mathematical
operations performed on matrices must be explicitly defined, and since these
operations may be defined in a number of ways, different matrix algebras may
be formulated. For linear structural analysis the conventional matrix opera-
tions are normally used. Only for nonlinear structural analysis are special
matrix operations required which are not found in the conventional matrix
algebra.

When matrix algebra is used in structural analysis, the organizational
properties of matrices allow for systematic compilation of the required data,
and the structural analysis itself can then be defined as a sequence of matrix
operations which can be programmed directly for a digital computer. Since
in any structural analysis the matrices are used only as a mathematical tool,
there is no need to know much of the pure mathematical properties of matrices
but only some of the simple operations in which they can be used. This ap-
pendix is therefore limited to the rudimentary elements of matrix algebra and
is provided here with a view to convenient reference and not as an exhaustive
treatment of the subject.

The various types of matrices occurring in structural analysis are described,
in addition to the fundamental matrix operations comprising addition, sub-
traction, transposition, multiplication, and inversion. Matrix inversion is
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associated with the solution of simultaneous linear algebraic equations; it is
usually obtained on a digital computer if the matrix size is large. However,
in order to understand the mechanism of matrix inversion, which only super-
ficially resembles division in ordinary algebra, several inversion techniques are
described. Some of these techniques are in fact used in computer programs.
The problem of finding the characteristic roots (eigenvalues) of matrices is
treated in only a cursory manner. For this and other details of the theory of
matrices standard textbooks on the subject may be consulted.

A.2 MATRIX NOTATION AND DEFINITIONS

MATRICES

A matrix is defined as a rectangular array of symbols or numerical quantities
arranged in rows and columns. The array is enclosed in brackets, and thus if
there are m rows and n columns, the matrix can be represented by

rall a12 a13
...

a15
...

a10 7

a21 a22 a23 ...
a2r

... a2n

a31 as2 a33 ... air ... a3n
A= (A.1)

ail ail ai3 ... air ... am

Lami am2 a, 3 am, . . am,j
where the typical element air has two subscripts, of which the first denotes the
row (ith) and the second denotes the column (jth) which the element occupies
in the matrix. A matrix with m rows and n columns is defined as a matrix
of order m x n, or simply an m x n matrix. It should be noted, however, that
the number of rows is always specified first. In Eq. (A.l) the symbol A stands
for the whole array of m rows and n columns and it is usually printed in boldface
type.

A matrix should not be confused with a determinant, which is also formed
from an array of symbols or numerical quantities. A determinant must always
be square; i.e., the number of rows must be equal to the number of columns,
and it can be evaluated since the determinant signifies a certain relationship
among its elements. On the other hand, a matrix merely represents an array
and it does not imply a relationship among the elements.

ROW AND COLUMN MATRICES

If m = I, the matrix A reduces to the single row

A= Ian a12 a13 ... all ... a10] (A.2)
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which is called a row matrix. Similarly, if n = 1, the matrix A reduces to the
single column

all

A=
a21

_ {au a21
... ana} (A.3)

LamiJ

which is called a column matrix. To save space, however, column matrices
may be written horizontally and enclosed in braces, as shown above.

The order of a row matrix is I x n, and the order of a column matrix is
mx1.

NULL MATRIX (ZERO MATRIX)

When all the elements of a matrix are equal to zero, the matrix is called null
or zero and is indicated by 0. A null matrix serves the same function in matrix
algebra as zero does in ordinary algebra.

SQUARE MATRIX

If m = n, the matrix A reduces to the square array

all a12

Ia21 a22 ..
a2,,A=

ni ant ...
ar,

(A.4)

which is called a square matrix. Square matrices occupy a special place in
matrix algebra since only square matrices have reciprocals (provided they also
satisfy certain relationships among the elements). There are several important
types of square matrices which will now be discussed.

DIAGONAL MATRIX

A diagonal matrix is one which has zero elements everywhere outside the
principal diagonal, defined as the diagonal running from the upper left to the
lower right corner of the array. It follows therefore that for a diagonal matrix
ail = 0 when i oj and not all af; are zero. A typical diagonal matrix may be
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represented by

all

A=

0 .. 01

0 a 0

0 0 .. annJ

or simply, in order to save space, as

A = [au a22

(A.5)

annJ (A.6)

The principal diagonal in a square matrix is usually referred to as the diagonal.

UNIT MATRIX (IDENTITY MATRIX)

A unit matrix is one which has unit elements on the principal diagonal and
zeros elsewhere. It is usually denoted by the symbol I. Thus a unit matrix
of order 3 x 3 can be written as

1 0 0

I= 0 1 0 =f1 1 1J

0 0 1

(A.7)

The unit matrix serves the same function in matrix algebra as unity does in
ordinary algebra. The order of the unit matrix is sometimes indicated by the
subscript n, and thus 1,, denotes a unit matrix of order n x n, for example,

I8 = (1 1 1] (A.8)

SCALAR MATRIX

If A is a diagonal matrix in which aii = a for all i, the matrix is called a scalar
matrix. Thus a typical scalar matrix may be represented by

A=[a a a] (A.9)

BAND MATRIX

If the nonzero elements in a square matrix are grouped around the principal
diagonal, forming a diagonal band of elements, the matrix is called a band
matrix. A typical example of the band matrix is the flexibility matrix for un-
assembled structural elements in which the linearly varying axial force is reacted
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by a constant shear flow. This flexibility matrix is of the form
ra,i a12 0 0 0 0 -1

a2, a22 0 0 0 0

0 0 a33 a34 ' 0 0

A= 0 0 a43 a44 0 0 (A.10)

L

0 0 0 0 an-i.n

0 0 0 0 ... a,,.,,_1 an.,, J

TRIANGULAR MATRIX

If all the elements on one side of the principal diagonal of a square matrix are
zero, the matrix is called a triangular matrix. There are two types of triangular
matrices, an upper triangular matrix U, whose elements below the principal
diagonal are all zero, and a lower triangular matrix L, whose elements above
the diagonal are all zero. In the special cases when the elements on the principal
diagonal are all equal to unity, the other nonzero elements being arbitrary,
attention is drawn to this fact by denoting U and L by U(I) and L(I ), respectively,
and referring to these special matrices as unit upper and unit lower triangular
matrices. A typical lower triangular matrix of order n x n is

all

L=

0 0 .. 01
a21 a22

a31 a32

0 ... 0

a33 . . 0

Lanl ant an3 ... ann-i

(A.11)

SYMMETRIC AND SKEW-SYMMETRIC MATRICES

A symmetric matrix is a square matrix whose elements are symmetrical about
the principal diagonal. Thus if the matrix A is symmetric, then aif = a51.

A skew-symmetric matrix is a square matrix in which the elements symmetri-
cally located with respect to the principal diagonal are opposite in sign, and
those located on the principal diagonal are zero. Thus for a skew-symmetric
matrix a,5 = -a5, and a,, = 0. If ai1 = -a5 but the elements on the principal
diagonal are not all equal to zero, the matrix. is called a skeiv matrix.

A.3 MATRIX PARTITIONING: SUBMATRICES

The array of elements in a matrix may be divided into smaller arrays by hori-
zontal and vertical lines. Such a matrix is then referred to as a partitioned
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matrix, and the smaller arrays are called submatrices. For example, a square
matrix of order 3 may be partitioned into four submatrices as shown below:

all a12 als

A 21 a2z a2s -
a31 a32 a33

A11 A12

CA21 A22

where All - all a12
J

Ca21

1

a22

A12 = {a13 a23}

A21 = [a31 a321

A22 = [a331

(A.12)

(A. 13)

(A.14)

(A.15)

(A.16)

Other partitioning arrangements are also possible with the above matrix.
Provided the general rules for matrix operations (addition, subtraction, etc.)

are observed, the submatrices can be treated as if they were ordinary matrix
elements. For certain types of matrices in structural analysis, the matrix
partitioning has a corresponding physical counterpart in structural partitioning,
a fact which greatly simplifies the arrangement of submatrices. For example,
flexibility matrices are usually partitioned so as to distinguish the location on
the structure to which the flexibility submatrices are referred. Stiffness matrices
can be partitioned in such a way that a large number of the stiffness submatrices
are null matrices, which can be very useful in simplifying subsequent matrix
operations in the analysis.

A.4 EQUALITY, ADDITION, AND SUBTRACTION OF MATRICES

Matrices of the same order are equal if each element of one is equal to the
corresponding element of the other. Thus if

A=B (A.17)

it then follows that

ail = b{f (A.18)

for all values of i and j.
If the corresponding elements in matrices A and B, of the same order, are

added algebraically, the resulting elements form a third matrix which is the sum
of the first two, that is,

A+B=C (A.19)

where c' j = a,, + btt (A.20)



APPENDIX A / MATRIX ALGEBRA 415

For example,

3 2 0 -1 3 1

1 7 -- 7 2= 8 9

3 5 6 3 9 8-

(A.21)

Similarly, if the elements in matrices A and B are algebraically subtracted,
the resulting elements form a third matrix which is the difference of the first
two, that is,

A - B = C (A.22)

where ctt = a,, - bi5 (A.23)

Taking again Eq. (A.21) as an example,

3 2 0 -1 3 3

1 7- 7 2

=
-6 5 (A.24)

3 5 6 3 -3 2
From the above definitions it is clear that equality, addition, and subtraction of

matrices are meaningful only among matrices of the same order. Furthermore,
it can be seen that the commutative and associative laws of ordinary algebra
are also applicable to the addition of matrices. That is,

A -I- B = B + A commutative law (A.25)

and (A + B) + C = A + (B + C) associative law (A.26)

It should also be noted that a null matrix can be defined as the difference of
two equal matrices. Thus if

A=B
it follows that

A - B = 0

(A.27)

(A.28)

where the right-hand side represents the null matrix of the same order as A
and B.

A.5 MATRIX TRANSPOSITION

The transposed matrix (or simply the transpose) is formed from the matrix A
by interchanging all rows for the corresponding columns. Thus the transpose
of a row matrix is a column matrix, and vice versa, while the transpose of a
symmetric matrix, including a diagonal matrix, is the same matrix. The
transposition of a matrix will be denoted here by the superscript T. Thus AT
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represents the transpose of A. Other symbols used to denote the transpose of
A are A and X.

For example, if

then

a21

a13 a23

(A.29)

(A.30)

Thus if the order of the matrix A is m x it, the order of its transpose AT is
n x m. It should also be noted that if a matrix is transposed twice, it reverts
to its original form, that is,

(AT)T = A (A.31)

If the elements of the matrix A are matrices themselves, i.e., submatrices,
the transpose of A is formed by interchanging rows of submatrices for the
corresponding columns and transposing elements in each submatrix. Thus if
the elements of the matrix Eq. (A.29) denote submatrices, then

AT =

13 23

(A.30a)

For square matrices which are either symmetric or skew-symmetric there
are two important relations:

AT = A for symmetric matrices (A.32)

and AT = -A for skew-symmetric matrices (A.33)

A.6 MATRIX MULTIPLICATION

Multiplication of the matrix A by a scalar c is defined as the multiplication of
every element of the matrix by the scalar c. Thus the elements of the product
cA are ca;5.

Two matrices A and B can be multiplied together in order AB only when the
number of columns in A is equal to the number of rows in B. When this condition
is fulfilled, the matrices A and B are said to be conformable for multiplication.
Otherwise, matrix multiplication is not defined. The product of two conform-
able matrices A and B of order m x p and p x it, respectively, is defined as

a12 a13 I

a22 a23
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matrix C of order m x n whose elements are calculated from

c{fGafrbrJ i=1,2,...,m, j=1,2,...,n (A.34)
r-1

where air and br1 are the elements of A and B, respectively.
The multiplication process can be extended to products of more than two

matrices, provided the adjacent matrices in the product are conformable. It
is therefore important that the multiplication sequence be preserved. A useful
rule for testing whether matrix products are conformable follows. If the
matrix product is ABC = D, where the orders of A, B, and C are m x n, n x o,
and o x p, respectively, the matrix orders are written in order of multiplication,
that is,

(m x n)(n x o)(o x p)

and a check is made whether the second number in the resulting product is the
same as third, the fourth number is the same as fifth, etc. In the example
quoted here the matrix D is of order m x p. However, this checking is not
very helpful if the matrices are all square matrices.

To show the application of Eq. (A.34) two simple examples will be considered.
As the first example the following matrix product will be evaluated:

1 2 3 3

4 5 6 2 -1
3 1 2 7 1 J

1 xI+2x2+3x7 1x3-2x1+3x1 26 4

4xl+5x2+6x7 4x3-5x1-}-6x1 = 56 13 (A.35)

3x1-+ -1x2+2x7 3x3-lxl+2x1 19 10

For the second example the matrix product of two matrices whose elements
are denoted by symbols will be evaluated:

Call a12 a131 bu b12

a21 a22 a b21 b22

b31 b32

a11bu + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a32b21 + a23b31 a21b13 + a22b22 + a2sb32
(A.36)

The associative and distributive laws apply to matrix multiplication, provided
that the multiplication sequence is preserved.

A(BC) = (AB)C = ABC

For example,

(A.37)

and A(B + C) = AB + AC (A.38)
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The commutative property, however, does not in general apply to multiplication
and
AB BA (A.39)

There may be cases when AB = BA, and the two matrices A and B are then
said to be commutable. For example, the unit matrix I commutes with any
square matrix of the same order, that is,
Al = IA = A (A.40)

When two matrices A and B are multiplied, the product AB is referred to either
as B premultiplied by A or as A postmultiplied by B.

The process of matrix multiplication can also be extended to partitioned
matrices, provided the individual products of submatrices are conformable
for multiplication. For example, the multiplication

III[All A121 11 B1211 A11B11 + A12B21 A11B12 + A12B22
(A.41)AB

- LA21 A22J [B21 B22] - LA21B11 + A22132, A21B12 + A22B22

is possible provided the products A11B11, A12B21, etc., are conformable. For
this condition to be fulfilled, it is only necessary for the vertical partitions in
A to encompass the number of columns equal to the number of rows in the
corresponding horizontal partitions in B. The partitioning of A by horizontal
lines and of B by vertical lines is arbitrary, and it does not affect the conform-
ability of the submatrices.

A.7 CRACOVIANS

Except for the rule of multiplication, cracovians are the same as matrices.
The product of cracovians A and B, taken in that order, is defined as the matrix
product ATB of the matrices A and B. The algebra of cracovians was intro-
duced by the Polish mathematician Banachiewicz, and it is still in favor among
some European mathematicians. Since any cracovian can be regarded as a
matrix, it is clear that the preference for one or the other can be based only on
tradition.

A.8 DETERMINANTS

BASIC DEFINITIONS

The determinant of a square matrix A is denoted by

all a12
...

a1,,

IA' = 1a21 a22
...

a2,, (A.42)

a,,1 an2 ... ann
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and is defined formally as the following summation:

JAI=If(a,, alt a3k ...) (A.43)

where the row suffixes of the elements appear in the normal order 1, 2, . . . , 11,

while the column suffixes i, j, k.... appear as some permutation of the normal
order. The positive or negative sign associated with a particular product in
the summation depends on whether when deriving the required permutation
sequence an even or odd number of interchanges of adjacent suffixes from the
normal order is required. The summation extends over n! permutations, half
of which are even and half odd.

PROPERTIES OF DETERMINANTS

The various properties of determinants are summarized here without proof.

1. The determinants of a matrix and its transpose are equal.
2. Interchanging any two rows or columns changes the sign of the deter-

minant.
3. If two rows, or two columns, in a determinant are identical, the value

of the determinant is zero.
4. If all the elements in a row, or in a column, are zero, the determinant is

zero.
5. Multiplication by a constant c of all the elements in a row, or in a column,

of a determinant JAI results in a determinant of value c JAI.
6. The addition of a constant multiple of a row (or column) to the cor-

responding elements of any other row (or column) leaves the value of the
determinant unchanged.

MINORS AND COFACTORS

The first minor of a determinant JAI, corresponding to the element aft, is defined
as the determinant obtained by omission of the ith row and the jth column of
JAI. Therefore, if JAI is of order n, any first minor is of order n - 1. This
definition can be extended to second, third, etc., minors, and thus, in general,
the determinant obtained by omission of any s rows and s columns from JAI
is defined as an sth minor or as the minor of order 11 - s. The first minor
corresponding to the element aft is denoted by Mfr

If the first minor M5 is multiplied by (-I)f+t, it becomes the cofactor of aft.
The cofactors are usually denoted by Aft. Hence

Aft = (-1)f+tMft
(A.44)
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EXPANSION OF DETERMINANTS

It can be demonstrated, using the elements of the ith row, that the determinant
IAI can be expanded in terms of the cofactors of the ith row. Thus the expansion
by the ith row is

n
IAI = ai1Ar1 + a12Ai2 + .. ' + ainAin = airAir

r-1

(A.45)

Similarly, since all rows and columns can be interchanged without changing
the value of the determinant, the expansion by the jth column is

IAI = a11A11 + a21A21 + ... + a,An1 = ar,Arr (A.46)
r-1

Equations (A.45) and (A.46) are called Laplace expansion formulas, and they
are particular cases of more general expansions of the cofactors of a determinant.
These general expansions are expressed as

it for k = i

l atrAxr = {t 0 for k i
(A.47)

when expanding the determinant by rows and

n IAI for k =j
I arlArk = (A.48)
r-1 1 0 for k j
when expanding the determinant by columns. When k = i in Eq. (A.46) and
k O j in Eq. (A.47), the summations are then called expansions in alien co-

factors; these expansions are of some importance in the derivation of reciprocals
of matrices.

A.9 MATRIX INVERSION (RECIPROCAL OF A SQUARE MATRIX)

Consider a square matrix of order n x n whose cofactors are given by A2 .

The square matrix

A11 A21 AS1 ... An11rA12 A22 A32 ' ' ' AntAA= (A.49)
A13 A23 ASS ...

Ana

LA1n A2n A3n ... AnnI
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formed from the cofactors Aif is defined as the adjoint of the matrix A and is
A

denoted by A. From this definition it follows that the adjoint matrix is the
transpose of the matrix of cofactors. Upon forming the product

AA=P (A.50)

and using the cofactor expansion form Eq. (A.47) it follows that a typical
element in P is given by

Pfi = a{1Ai1 + aizAf2 + ... + afnAtn = L, afrAir
IAA if i =j
0 ifij

r-1

(A.51)

Thus only the elements on the principal diagonal are nonzero and equal to
JAI, while all other elements are zero. Hence P is a scalar matrix, and

A

AA = JAII (A.52)

where I is the unit matrix of the same order as A. Dividing throughout by
JAI, which is admissible only provided JAI 0, gives

A

AA

TA-1 =

where the matrix
A

A-' = IA) (A.54)

is defined as the reciprocal or inverse of A. Only matrices for which IAA : 0
have an inverse. Such matrices are called nonsingular. This implies that
reciprocals of rectangular matrices do not exist. Starting with the product
AA, it can be shown that

A-'A = I (A.55)

It is therefore apparent from the above discussion that the inverse of a square
matrix performs a function in matrix algebra analogous to division in ordinary
algebra.

To illustrate the inversion process, the inverse of

A= all a12

a2, 022

will be evaluated. The inverse will be assumed to be given by

A-' _
[bii b12]

bz1 b22

(A.56)

(A.57)
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Now from the definition of matrix inversion A-'A = I it follows that

bil b12 all a,2

b 21 b22J [a21 a221

b11a11 + b12a21 b11a12 + b12a22 I

b21a11 + b221721 b21a12 +
b22a221 _- 10

01

1

(A.58)

Equating the corresponding elements results in

b11a11 + b12a21 = 1

b11a12 + bl2a22 = 0

b21a11 +I b22a21 = 0

b21a12 + b22a22 = I

(A.59)

Solving Eqs. (A.59) for b11, b12, b21, and b22 and then substituting into Eq.
(A.57) gives

1 a22

[ (A.60)A_' =
a11a22 - a21a12 -a21

The above equation can be recognized as A-' = A/IAI. This equation gives
an explicit formula for the calculation of the inverse of 2 x 2 matrices. For
matrices of order 3 x 3 the cofactors A; j and the value of the determinant JAI
can be easily evaluated and the matrix inverse found from Eq. (A.54). For
larger matrices, however, special techniques suitable for automatic computation
must be used. Some of these techniques are described in Sees. A.17 and A.18.

If the matrix to be inverted is a diagonal matrix

A= [au a22 ... a..] (A.61)

then A-' =
I

Iall 1 1]
(A.62)

i a22 ann

Hence the inverse of a diagonal matrix is also a diagonal matrix whose elements
are the reciprocals of the elements in the original matrix.

If a matrix is inverted twice, it reverts to its original form. Hence

(A-')-' = A (A.63)

A.10 RANK AND DEGENERACY

If the rows of a square matrix A of order n x n are not linearly independent,
the determinant IAA = 0, and the matrix is said to be singular. If the rows of
a singular matrix are linearly connected by a single relation, the matrix is
defined as simply degenerate or is said to have a degeneracy of one. Naturally,
there may be s such relations, in which case the matrix is multiply degenerate
or is said to have degeneracy s. The rank of the matrix is then defined as
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r = n - s. The preceding remarks are, of course, true for the rows as well
as the columns.

Somewhat different definitions of degeneracy and rank of a square matrix
are as follows: when at least one of the minors of order r of an n x n matrix does
not vanish, whereas all its minors of order r + I do vanish, the matrix is said
to have degeneracy n - r, and its rank is r.

The concept of a rank can also be extended to rectangular matrices. Thus
a matrix of order m x n has rank r when not all its minors of order r vanish
while all of order r + I do so. It is evident that r is always less than or equal to
either m or n.

A rectangular (or square) matrix of rank r has r linearly independent rows
and also r such columns.

A.11 TRANSPOSITION AND INVERSION OF
MATRIX PRODUCTS (REVERSAL RULE)

When a matrix product is transposed, the sequence of matrices in the product
must be reversed. This rule holds true for any number of matrices. For
example, if

F = ABCD (A.64)

then FT = DTCTBTAT (A.65)

In structural problems, a matrix product of the form

ATFA = C (A.66)

is often found, where F is a symmetric matrix and A is a rectangular matrix.
Applying the general rule for matrix transposition, it therefore follows that

CT = ATFT(AT)T = ATFA = C (A.67)

which implies that C is also a symmetric matrix.
The inversion of a matrix product requires reversal of the matrix sequence,

as in the transposition of a matrix product. For example, if

F = ABCD (A.68)

then F-' = D-'C-'B-'A-1 (A.69)

A.12 SOLUTION OF SIMULTANEOUS EQUATIONS

N linear simultaneous equations in the unknowns x1, x ,. .. , x

a11x1 + a18x2 + ... + b1

a21x1 + a22x2 + ... + a2nxn = b2 (A.70)....................
a»1x1 + an2x2 + ... + annxn = bn
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can be arranged in matrix form as

Fall a12
... a,.] rxl

a21 a22
...

a2,,

an1 a,,2
...

annJ

Ib2I

b

(A.70a)

or simply AX = B (A.70b)

Provided IAA 0 0, both sides of Eq. (A.70b) can be premultiplied by A'', so that

A-'AX = A-'B
and hence X = A-'B (A.71)

Thus once the inverse of the matrix A has been found, the solution for the
unknowns X = {x, x2 x,,} can be obtained from the matrix multiplica-
tion of A-'B.

A.13 INVERSION BY MATRIX PARTITIONING

Given a partitioned square nonsingular matrix, is it possible to find its inverse
by a process involving only inversion and multiplication of submatrices.
Consider a square matrix A and its inverse A-', each partitioned into four
submatrices in such a way that the submatrices on the principal diagonals are
square. Thus if the matrix A is partitioned into

A=

B12

B22

then from A-'A = I it follows that

[B11 B121 [A11 A121 _ rI 0
B21 B22 A21 A220 I

(A.72)

(A.73)

(A.74)

The diagonal unit submatrices on the right-hand side of Eq. (A.74) are of the
same order as A11 and A22, respectively, while the remaining submatrices are
null. Multiplying the matrix product on the left-hand side of Eq. (A.74) and
then equating its submatrices to those of the unit matrix on the right-hand
side gives the following four matrix equations:

B11A11 +1- B12A21 = I (A.75a)

B,1A12 + B12A22 = 0 (A.75b)

B21A11 + B22A21 = 0 (A.75c)

B21A12 + B22A22 = I (A.75d)
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Equations (A.75) can be solved for the unknown submatrices B,,, B,2, B21,
and B22. Since the solution of simultaneous matrix equations differs from the
solution of similar equations in ordinary algebra, the solution of Eqs. (A.75)
will be demonstrated in detail. Postmultiplying Eq. (A.75a) by A,,-' gives

1 -- B,2A2,A111 = All-'
Hence B11 = All-' - B12A2,A,, ' (A.76)

which, when substituted into Eq. (A.75b), gives

A,i 'A,z - B,2A2,A,, 'A,2 + B,2A22 = 0
or B,2(A22 - A2,Au 'A,2) = -A,, IA,2

Postmultiplying Eq. (A.77) by (A22 - A2,A,,'A,2)-I leads to

(A.77)

B12 = -A,1 IA,2(A22 - A2,Au 'A,2)-' (A.78)

Substituting now Eq. (A.78) into (A.76) gives

B = A11-1 + A,i 'A,2(A22 - A2,A,1 'A,2)-'A,,A1i 1 (A.79)

Postmultiplication of Eq. (A.75c) by A,,-' gives

BY1 = -B22A21A,1 ' (A.80)

which, when substituted into Eq. (A.75d), leads to

B22 = (A22 - A2,A,u 'A,2)-' (A.81)

Therefore from Eqs. (A.80) and (A.81) it follows that

B21 = -(A22 - A2,A,1 'A,2)-1Aa,A,i ' (A.82)

Examination of Eqs. (A.78) to (A.82) shows that the calculation of the matrix
inverse of the partitioned matrix A involves only inversions of matrices of the
same order as the order of submatrices in the matrix A, and thus appreciable
saving of computing time may be achieved, since matrix inversions of much
smaller order than of A are required. Although these equations appear to be
rather lengthy, it must be remembered that the matrix multiplication, addition,
or subtraction can be carried out much more rapidly than matrix inversion.
Furthermore, these equations can be simplified if new matrices are introduced
such that

X=A11'A,2

Y = A2,A11 1

Z=A2S-YA12=AE2-A2,X

(A.83)

(A.84)

(A.85)
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It can then be shown that

B11 = A,1-1 + XZ-1Y (A. 86)

B12 = -XZ-1 (A. 87)

B21 = -Z-'Y B22 = Z-1 (A.88)

A.14 EXTRACTION OF THE INVERSE OF A REDUCED MATRIX

Consider a partitioned square matrix

"A Bl
M

= L J
(A.89)

C D
where A and D are square submatrices. The inverse of this matrix will be
assumed to exist and is given by

a b
M-1 = (A.90)

c d

It is required to find the inverse of the reduced matrix

M* = A (A.91)

The inverse can be found most conveniently from the inverse of the original
matrix M, assuming of course that this has already been found. From Eqs.
(A.89) to (A.91) it can be shown that

K-1 = a - bd-1c (A.92)

The method is advantageous only where the size of the matrix d is considerably
smaller than that of M,.; otherwise it would be more expedient to determine
the inverse of M,. directly.

A.15 INVERSION OF A MODIFIED MATRIX

Consider a square matrix

Mo =
[Ao Bl

C DI
(A.93)

for which the inverse has been calculated and is given by

MO-1 = [so b

c d
(A.94)
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where the submatrices on the principal diagonals are square. If now only a
portion of Mo is to be modified, a problem which occurs very frequently in
structural analysis when part of the structure is modified, such that the modified
matrix can be expressed as

r
M. = M0 +

I

OA

0] =
[Am

B]

where Am = Ao + AA (A.96)

then it can be demonstrated that the inverse of the modified matrix M. can be
calculated from

Mm' = Mo 1 -
aU

q-1 AA [ao b]
c

(A.97)

where q = I -}- AA so (A.98)

Here again the method is advantageous only if the size of the matrix q is small in
comparison with the size of the modified matrix M,,,.

A.16 INVERSION OF A TRIPLE-BAND MATRIX

The stiffness matrix K used in the matrix displacement method of analysis can
be arranged into a triple-band matrix provided the columns in K refer to
structural partitions in which each partition has common boundaries with not
more than two adjacent structural partitions. In this way the only coupling
submatrices will be those representing adjacent structural partitions.

If the triple-band matrix is denoted by K and its inverse by F, then from
KF=I

K11 K12

K21 K22 K23

K32 K33

0

K34

.........................

0

Kn»J

11 F12 Fl3

F21 F22 F23

F31 F32 F33

LF,,1 Fn2 F 3 ...

I (A.99)

It will be assumed that the matrix K is symmetric (K,i = K,,'), and therefore
the inverse F = K-1 is also symmetric. By multiplying out the product FK
in Eq. (A.99) a sufficient number of equations is obtained from which the
unknown submatrices F,, can be determined. Since F is symmetric, only the
diagonal submatrices and those above the principal diagonal need be calculated.
The results are summarized below.

(A.95)
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For the first row in F

F11

F12

Fla

= K11-1 + T12F22F12T

= T12F22

= T12F23 (A. 100)

F1n = T12F2n

where T12 = -K11-1K12 (A.101)

For the second row

F22 = (K22 + K21T12)-1 + T23F33T23 7,

F2a = T23Fas

F24 = T23F34

F2n = T23Fan

where T23 = -(K22 + K21T12)-'K23

Similarly, for the (n - l)st row

Fn-1,n-1 = (Kn-l.n-1 + Kn-l.n-2Tn-2.n-1)-' + Tn-1.nFn.nTn1.n

Fn-l.n = Tn-1.nFn.n

(A. 102)

(A.103)

(A. 104)

where Tn_l.n = -(Kn-l.n-1 + Kn-1.n-2Tn-2.n-1)-1Kn-1.n (A.105)

while for the nth row only one submatrix is required

Fn.n = (K,,.,, +
Kn.n-lTn-l,n)-1 (A.106)

Once the T matrices have been calculated, the back substitution of Eq. (A. 106)
into (A.104), etc., produces the required matrix inverse. It should be noted
that in any given row in F the submatrices located to the right of the principal
diagonal submatrices are expressed simply as matrix multiples of the sub-
matrices in the row below, and thus the computational effort is greatly simplified.

A.17 INVERSION BY SUCCESSIVE
TRANSFORMATIONS (JORDAN TECHNIQUE)

The matrix inversion of a nonsingular matrix A can also be achieved by a series
of transformations which gradually change the matrix A into the unit matrix I.
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This method is usually referred to as the Jordan technique, and its main steps will
now be outlined. If the matrix A to be inverted is given by

all a,2

A= a2, a22

alnl
... a2n

(A.107)

and a,,2 ... annJ

it is possible to determine a series of transformation matrices T,i T2, ... , T,,
such that

T,Tn_1.-. T2T,A = I.

from which it follows that

T T2T1 = A-'

(A.108)

(A.109)

The above matrix multiplication can be carried out by starting with a unit
matrix and premuitiplying it successively by T1, T2, . . . , and T,,; thus while the
given matrix A is systematically reduced to the unit matrix In, the transformation
matrices T produce, in stages, the required matrix inverse A-'. The pre-
multiplication of A by T, produces a matrix in which the first column is the
same as the first column in the unit matrix; i.e., the first element is unity while
the remaining elements are zero. The premultiplication of the product T,A by
T2 produces a matrix in which the first two columns are the same as in the unit
matrix, and so on for subsequent premultiplications till a complete unit matrix is
generated, as given by Eq. (A.108).

To eliminate the elements of the first column of A except for a,1, while
reducing the latter to unity, A is premultiplied by the matrix T,i given by

r 1

T1=

all
-aE,
all

-aa1

all

0

(A.110)

L
and

ail
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Hence B = T1A =

F-1 b12 b13
... b1.1

0

b22 b23 ' . b2n

b32 bas b3n
(A.111)

bn2 bn3 ... bn I

where

and

1115=
a15

all

b55 = ads -

(A.112)

arla15

all
fori 1 (A.113)

To eliminate the elements of the second column of B except for b22, while
reducing the latter to unity, B is premultiplied by the matrix T2, given by

1-612 0
b22

T2 =

............ --------

0 1122 0

-b32
b22

0 n-2

The premultiplication of T1A by T2 leads to

12
C13 C14 C1217

C23 C24 C2n

C = T,B = T2T1A =

0

C33 C34 ' . ' Can

C43 C44 ' ' ' C4n

(A.114)

(A. 115)

Cn3 Cn4
... Cnn-



where C2, = b2;

b22

and ctf = b;f - b;2b2r for i 0 2622

This procedure is followed on until the last premultiplication with
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(A.116)

(A.117)

-nl n

nnn

T,, =
-1ln-l,n

(A.118)

nnn

I

n.m, J
reduces the matrix A to the unit matrix In [see Eq. (A. 108)].

If in some stage of the calculation of the matrices T1i T2, T3i . . . one of the
diagonal elements all, b22, c33, ... is found to be equal to zero, the elimination
process cannot be continued. It is then necessary to interchange the affected
column with some subsequent column, and this implies that the columns in the
matrix inverse will be taken in a different order. The method proceeds in the
usual way until a further zero diagonal element is found, and then a further
column interchange is introduced. It should be observed that these inter-
changes do not affect the previously calculated transformation matrices T, but
the matrix inverse will have the affected columns interchanged. To preserve
the original column sequence the affected columns in the matrix inverse can be
interchanged back to their original positions.

If instead of the matrix inverse only the solution to a set of simultaneous
equations

AX = Z (A.119)

is required, namely,

X = A -'Z (A.120)

where Z is a column matrix, then in order to find X it is preferable to perform
first the multiplication T1Z followed by the premultiplications by T2, T3, ... , T,,.
The advantages of this approach are obvious, since the premultiplications would
be performed on matrices of order n x I as compared with n x n order when
the matrix inverse is calculated first.
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To illustrate the Jordan technique consider the nonsingular matrix

4 2 1

A= 2 3 2

1 2 3

for which the transformation matrix T, given by Eq. (A. 110) becomes

0 0

T,= - 1 0

- 0 1

Premultiplying Eq. (A.121) by (A.122) gives

0 0 4 2 1 I

B=T,A= - 1 0 2 3 2= 0 2

- 0 1 1 2 3 0 2

(A.121)

(A.122)

(A.123)

Following now the steps outlined in the method leads to

1 -1 0 1 } 1 0-
C= T2B = 0 0 0 2 2= 0 1 (A.124)0 1

0 2

jI-

0 0 8a

1 0 la 1 0 -} 1 0 0

D= T3C = 0 1 -tea 0 I= 0 1 0 (A.125)

0 0 ;$ 0 0 0 0 1

The matrix inverse can now be calculated from Eq. (A.109), and hence

A-1 = TSTQT,

1 0 19 1 - 0 } 0 0

0 1 -18 0 2 0 -1 1 0

0 0 0 - 1 - 0 I

l 0 - 0 5 -4 1

0 1 a - 0 13 -4 11 -6 (A.126)

0 0 3a } -2 1 1 -6 8
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Once the matrix inverse A-' has been determined, it is advisable to calculate
either A-'A or AA-1 as a check on the arithmetic; either product must, of course,
be equal to a unit matrix.

From the computational point of view it is advantageous to combine Eqs.
(A.108) and (A.109) into one equation

T2T1[A (1] = [I A-1] (A.127)

The successive premultiplications by the T matrices are here performed on the
rectangular matrix [A : I] instead on the matrix A alone. The rectangular
matrix [A I] is referred to as the augmented matrix. If only the solution to a
set of simultaneous equations is required, the T matrices can be operated on an
augmented matrix [A Z], where Z is defined by Eq. (A.I 19). The solution
for the unknowns X is then obtained from

T.T,t-1 ... T2T1[A ! Z] _ [I X] (A.128)

The Jordan transformation technique has been found very useful for the
determination of redundant forces using the equilibrium equations. This
particular application is discussed in Sec. 8.3.

A.18 INVERSION BY THE CHOLESKI METHOD

The Choleski method of matrix inversion depends upon the properties of tri-
angular matrices. The basis of this method is that any square matrix can be
expressed as the product of an upper and a lower triangular matrix. The actual
inversion of the matrix is then reduced to the inversion of the two triangular
matrices, which is a very simple procedure. In practically all structural
problems the matrices to be inverted are symmetric, and for these cases only one
triangular matrix need be inverted.

We assume first that the nonsingular matrix A can be expressed as the product
of a lower triangular matrix L and a unit upper triangular matrix U(l), so that

A = LU(1) (A.129)

Writing the above equation in full, we have

ra11 a12 ala

a21 a22 a23

a31 a32 a33

a127

a

a3,.

x111 0 0 ... 0 1 u12 u13 u1n

121 122 0 ... 0 0 1 1123 U2n

131 132 133 . . 0 0 0 1 .. u3

Lanl ant a,3 annJ LIn1 /n2 /n3 .. /,,.j L0 0 0 .. I J
(A. 130)
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Multiplying out the triangular matrices in Eq. (A.130) and equating the corre-
sponding matrix elements gives

11, = all

1111112=a12

111lln = al,,

a12
1112 -

I11

aln
211,, =

/11

Inl = a..1

12i1112 + 122 = a22 122 = a22 - 1211112

/211113 + /221103 = (123 1183 =

a2,, - /21111

122

121111 + '20'2n = as

/311112+13.3=a32

122

131 = a31

'32=a32-131U12

/311113 + 1321123 + 133 = (133 133 = a33 - 1311115 - 1321123

131111.1 + /32"21 + /331134 = a34

. . . . . . . . . . . . . . . .

U34 =

a23 - 1211113

a34 - 1312114 - 13811.24

133

. . . . . . . . . . . . . . . . . . . . .

a3 - /31211,, - /32112
131111)t + /32212n + /33"31, = a31, 1131, -

/33

and so on. The above equations can be written in a more compact form as

i > j lower triangular matrix

i < j upper triangular matrix

11t1 = I (A.131)

Once the two triangular matrices L and U(I) have been calculated, the inverse

of the matrix A is determined from

A-1 = [LU(l)1-1 = [U(l)1-1L-1 (A.132)
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To determine the inverse of the lower triangular matrix we shall use the relation-
ship

LL-' = LM = I (A.133)

where M = L-' (A.134)

Eq. (A.133) can be written fully as

r/11 0 0

121 122 0

131 132 133

0-1

0

0
.................

mil 11112 nl,,,7M13

17121 11122 17183
... 111211

m31 m32 m33 ' * * m3n

1 0 0 0

0 1 0 .. 0

0 0 1 ... 0

L1n1 /172 1173 /nnJ LnIn1 mn2 mn3 . mrraJ LO 0 0 .. 1 J

(A.135)

Multiplying out the matrices L and M and equating the corresponding matrix
elements, we have that

111m11 = I

111m12 = 0

/11m1n = 0 m1n = 0

121m11 + 122m21 = 0 M21 =

121m12 + 122m22 = 1

121m13 + 122m23 = 0

-121,n11

122

1
M22 =T21

m23=0

121m1n + 122m2n = 0 m2n = 0

-}-l m -I-/ m =0 m =m
-(131m11 + 132m21)

11 32 21 33 31 31a1
/3S

-13811122
13117712 + 13211122 + 133m32 = 0 m32 =

1

131m13 + 132m23 + /33m33 = 1 m33 = /
33

131m14 + 132m24 + /33m34 = 0 11134 = 0

.................

/33

131m1n + 132ni2n + 133m3n = 0 m3n = 0
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and so on. The above derived expressions for the elements of M can be put
into a more compact form as

m££ = diagonal elements
I££

l i-1

m£s = - - I£,.mri i > j elements below the diagonal
I££ r=I

m£f = 0 i < j elements above the diagonal (A.136)

Thus the inverse of the lower triangular matrix L is also a lower triangular
matrix. Similarly, it can be shown that the inverse of the unit upper triangular
matrix U(1) will be another upper triangular matrix, so that if

[U(1)]-' = N (A.137)

then the elements of N are given by

n££ = I diagonal elements
i-1

n£i = - I n£urf i < j elements above the diagonal (A.138)
r-£

n£; = 0 i > j elements below the diagonal

Hence having found the elements of the triangular matrices M and N, we can
calculate the matrix inverse A-' from

A-' = U(1)-'L-' = NM (A.139)

If in the calculation of the lower triangular matrix L a diagonal element 1££ = 0
is found, thereby indicating that the method appears to fail, it is necessary to
interchange the ith row with some subsequent row. This implies that the
equations associated with the matrix inverse will be taken in a different order.
The method proceeds in the usual way until a further diagonal element, say
Ikx = 0, is found, and then the kth row is interchanged with a subsequent row.
It should be noted that because of these interchanges of rows, the matrix inverse
will also have the corresponding rows interchanged. If necessary, the original
row sequence can be restored by interchanging all the affected rows again.

When the matrix A is symmetric, the process of finding its inverse can be
shortened. This is due to the fact that it is then possible to express A in the form

A = AAT (A.140)

where A is a lower triangular matrix given by
,I11 0 0 ...

0-
A21 122 0 ...

A = 0 (A.141)
31 32 33

...................

-41 1n2 1n3
.. ,`nn
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Applying now the method used for finding the elements of L and U(1), we can
show that the elements of A are given by

r-1

¢
nri - 2ir22ir =

/r=1

r=1 7r2ij =
2ii

7i1j = 0 i < J

The elements uij of the inverse of A can be determined from AA-1 = Ir, which
leads to

i-1

2irlurj i > j (A. 143)

2IL

0 1<]
Hence the inverse of A is a lower triangular matrix. To determine the elements
of A-1 we note that for any nonsingular matrix A

AT

(A7')-1 = AI = (A-1)T (A. 144)

and therefore (AT)-1 = (A-1)T (A.145)

The matrix inverse for the symmetric matrix A is then calculated from

A-' = (AA")-' = (A-')TA-1 (A. 146)

A.19 PROCEDURE FOR IMPROVING THE
ACCURACY OF A MATRIX INVERSE

Since the inverse of a large matrix is obtained by a succession of matrix oper-
ations, its accuracy is affected by the rounding-off errors, and therefore it is
desirable to have a simple procedure whereby the accuracy of an approximate
matrix inverse can be improved. Suppose that the inverse of a matrix A has
been determined approximately by any of the standard numerical methods and
it is required to find a closer approximation to the true inverse. If this approxi-
mate inverse is given by the matrix A,-', then

A71 = A,-' + AA, (A.147)

j-1
arj - 12rr2rj X i - ' (A 142)
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where AA, represents a matrix of small corrections to A,-'. The matrix Al-'
can also be interpreted here as the true inverse of A,, which differs not too greatly
from A. Premultiplying Eq. (A. 147) by the product A1-'A, we have

A,-' = A, 'AA,-' + A,-'A AA, (A.148)

Assuming now that the product A,-'A is approximately equal to I, it follows
from Eq. (A.148) that

AA, -- A,-'(I - AA,-')

which, when substituted into Eq. (A.147), leads to

A-' A,-'(2I - AA,-')

(A.149)

(A.150)

Equation (A.150) provides a means of determining a closer approximation to the
true inverse A-' from the approximate inverse A,-'. If still better accuracy is
required, Eq. (A.150) can be used for subsequent iteration. Denoting the nth
approximation to the inverse by An', we have, from Eq. (A.150),

A,-1 A,i'1(2I - AA,-',) (A.151)

A.20 TEST MATRIX FOR INVERSION COMPUTER PROGRAMS

Very often it is necessary to check out a computer program for inversion of large
matrices. This can be done most conveniently using the following n x n
nonsingular matrix

n+2 1

A=

0 0 0
1 -I

2n+2 2 2n+2

_I 1 -1 0 ... 0 0
2 2

0 -2 1 -2 .. 0 0

......................................

1 1

0 0 ... ... - 2
1 - 2

(A.152)

... ... 1 n+2 I
2n - 2

0 0
2 2n { 2
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whose inverse is given by

A-' _

A.21 DIFFERENTIATION OF MATRICES

If the elements ai5 of a matrix A are functions of a parameter t, we define matrix
differentiation as

^dall da12 dal,,

di dt dt

dA da21 da22 da2_
T,

-A_
di

da,,

dt

da,,,2

di

dal,,,,

(A.154)

dt dt dt

n n-I n-2 2 I

n-I n n-1 3 2

n-2 n-1 11 4 3

L

2 3 4 n n-1-I
1 2. 3 n- l n

(A.153)

That is, the matrix A is differentiated by differentiating every element in the
conventional manner. In the same way we define higher derivatives of matrices.
For example, the second derivative of a matrix with respect to time requires that
every element be differentiated twice.

In matrix structural analysis we also find need for differentiation with respect
to every element in a column matrix X = (X1 X2 For example,
we may require derivatives of some energy function U represented by a I x 1
matrix. Symbolically this may be written as

au
axe au

(A.155)
ax

au

ax,,
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Very often the matrix U is obtained from matrix multiplication represented
symbolically as

U = jXTAX + XTB + C (A.156)

For this expression we obtain

8U

TX

=AX+B (A.157)

Equation (A.157) can be proved formally by multiplying out the matrix products
in Eq. (A. 156) and then performing differentiation, as defined above.

A.22 INTEGRATION OF MATRICES

If the elements a1 of a matrix A are functions of a parameter !, we define matrix

integration as

rr

ail dt f a12 d! ... $ al,, di

f A d! _ a21 di f a22 d! . r a2,, d! (A. 158)..................
Lf a,,, di f amt d! ...

Multiple integrals are defined in an analogous manner. If we want to find an
integral of a matrix product such as, for example;

M = f f f ATCA dx dy dz (A. 159)

in which the elements of A are functions of x, y, and z while the elements of C

are constants, we must first carry out matrix multiplication and then integrate
each element in the resulting matrix.

A.23 EIGENVALUES AND EIGENVECTORS

Consider a matrix equation

Ax=Ax

or (A - ?.I)x = 0 (A.160)

in which A is some undetermined multiplier and A is a square matrix. When

this equation is written in full, we have

(all -A)x1+a12x2+...+alnxn=0

a21x1 + (a22 - A)x2 + ... + a2nxn = 0 (A.160a)
.....................................

an1x1 + (ann - A)x.n = 0
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A nontrivial solution of these equations is possible provided that

a11-2. a12 aln

a21 (a22 - A) . . .
a2n = 0 (A.161)

.......................

I and an2
... ann

or, in matrix notation,

IA-2I1=0 (A.161a)

When the determinant in (A.161) is expanded, we obtain a polynomial in A of
the form
)n + a2An-2 + ... + a,, = 0 (A.162)

which is known as the characteristic equation of the matrix A. The roots
21, 22, ... , A of the characteristic equation are known as the characteristic
values of the matrix A. An alternative name used is the eigenvalues of the
matrix A.

The eigenvalues 21i 12f .... 1.,, fulfill two conditions:
H

YAt=trA
t=1

and IT 2t = IAI
t

(A.163)

(A.164)

where tr A is the trace of the matrix A defined as att and At is the product
tsl t

of all eigenvalues. These two conditions can serve as valuable checks on the
calculated eigenvalues.

As an example consider the equation

12

The characteristic equation is given by the determinant

2-A I

=0
2 3-7.

which when expanded yields

22-5),-}-4=0

(A. 165)

(A.166)

(A. 167)

The roots of this equation are Al = 1 and A2 = 4. Substituting A = I into
Eq. (A.165) and assuming that x1 = I, we find that x2 = -1. Similarly for
), = 4 when x1 = I is assumed, we find that x2 = 2. The vectors

X'11 = {I -I) (A.168)
X(2) = {I 2) (A.169)
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are described as the eigenvectors corresponding to the eigenvalues 2 = I and 4,
respectively. Since Eq. (A.165) is homogeneous, only relative values of the
eigenvectors x can be determined for each eigenvalue. In vibration analysis
the eigenvectors are referred to as eigenmodes.

The more general eigenvalue problem is of the form

(A - ),B)X = 0 (A.170)

where both A and B are square matrices. The characteristic equation in this
case is

IA-2B1=0 (A.171)

Equations of this type are found in the vibration analysis of elastic systems
and also in buckling analysis. If either A or B is nonsingular, it is possible
by premultiplying Eq. (A.170) by either (1/2)A-' or B-' to reduce it to the
standard form (A.160).

A.24 EIGENVALUES AND EIGENVECTORS
OF THE QUADRATIC MATRIX EQUATION

In Chap. 12 we saw how the frequency-dependent mass and stiffness matrices
lead to an equation of motion in the form of a matrix series with ascending
powers of the frequency co. By retaining terms up to and including w' we
obtain an equation of the form

(A - w2B - (o4C)q = 0 (A.172)

where A, B, and C are square matrices. The condition for nonzero solution
for q is

IA - w2B - w4CI = 0 (A.173)

This determinant can be expanded, and the roots cot of the resulting polynomial
can then be substituted into Eq. (A.172) in order to calculate the corresponding
eigenvectors (eigenmodes). Two other methods for obtaining the eigenvalues
and eigenvectors of Eq. (A.172) can also be used. These methods are described
below.

ITERATIVE SOLUTION

It will be assumed that Eq. (A.172) has eigenvectors pl, P2, ... , p corresponding
to positive (including zero) eigenvalues wl, w2, . . . , w,,. After introducing

2 = wi2 co,2 (A.174)

and P = IN P2 PJ (A.175)
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Eq. (A.172) can be written as

Ap - BpSa2 - CpSa4 = 0 (A. 176)

Postmultiplying Eq. (A.176) by p-', we obtain

A - BpSa2p-' - Cpn1p-' = 0 (A.177)

We now introduce a new matrix defined by

E = pSa2p-' (A. 178)

so that Eq. (A.177) becomes, after premultiplying by C-',

E2 = C-'A - C-'BE (A.179)

Equation (A.179) forms the basis for the iterative solution. We define next
the matrix E as

E = Eo + AE (A.180)

where Eo = PoSj o2Po 1 (A.181)

is obtained from the conventional solution eigenvectors po and eigenvalues Sao
satisfying the equation

Apo - Bp0S102 = 0 (A.182)

and AE is a correction matrix. Substituting Eq. (A.180) into (A.179), we have

(Eo + AE)E = C-'A - C-'BE (A.183)

Hence E (Eo + C-'B)-1C-'A (A. 184)

which is used to establish the iterative loop

Es+1 (E + C-'B)-'C-'A (A.185)

where n denotes the nth step. Once satisfactory convergence has been achieved
for E, the quadratic-equation eigenvalues and eigenvectors are determined
from the conventional equation, obtained from Eq. (A.178),

(E - 122)p = 0 (A. 186)

The above method has been used by PrzemienieckiE7b for systems with up to
10 degrees of freedom. One drawback of this method is that occasionally,
since the quadratic equation has both positive and negative eigenvalues, the
iteration procedure will produce some negative eigenvalues in place of a few
highest eigenvalues (frequencies). If these frequencies are required, alternative
methods must be used for these cases. This usually occurs when Eo differs
greatly from the final value of E.
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DIRECT SOLUTION

A direct method of solving for the eigenvalues and eigenvectors of Eq. (A. 172)
is described by Buckingham. In this method we introduce

4 = (,)q (A.187)

The fundamental equation (A.172) is premultiplied by C-' so that

C-'Aq - C'B4 - awz4 = 0 (A. 188)

which is then combined with Eq. (A. 187) to form

[C-0)

2I I q
_ 0 (A.189)

-(C-'B + w21)

or
[C0

-C-1E11 - [4]
0 (A.189a)

Since Eq. (A. 189a) is of a standard form, any conventional eigenvalue computer
programs can be used. The only disadvantage of this method is that it involves
2n unknown components in each eigenvector compared with n components in
the original system.
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Adjoint matrix, 420-421
Amplitude, oscillations, 311
Analysis, structural, 7-9
Associative law, matrices, 415, 417
Augmented matrix, 205, 433
Automatic generation, redundancies,

200-205,251
Axial-force element, 153-155

Band matrix, 412-413
Bar element (see Pin-jointed bar element)
Beam element, 56, 70-82, 169-17 1,

175-176,284-287,292-297
Betti's theorem, 43-44
B-matrix, beam, 170-171, 176

definition, 169
pin-jointed bar, 169
rectangular plate (with bending), 189
rectangular plate (in-plane forces), 182
tetrahedron, 185
triangular plate (in-plane forces), 179

Buckling (see Stability analysis)
Buckling determinant, 386, 395

Castigliano's theorems, 25-26
part I, 36-37, 66-67
part 11, 40-41, 173-174

Characteristic equation (see Eigenvalue
equation)

Characteristic modes (see Eigenvectors)
Characteristic value (see Eigenvalues)
Choleski method (see Matrix inversion)
Clapeyron's theorem, 42-43
Cofactors, 419
Column matrix, 411
Commutative law, matrices, 415
Compatibility equations, 23-24
Complementary strain energy,

density of, 30
total deformation, 31
virtual, 38

Complementary virtual work, principle of,
38-40

Complementary work, 29

Complex roots, 320-321
Condensed mass, 291-292
Condensed stiffness, 147-148
Conformability of matrices, 416
Congruent transformation, 291-292
Constrained structures, 314
Coordinate system, datum (reference),

67-68
local, 67-68

Cracovians, 418
Creep, 395-396
Cut-outs, analysis of, 227

D'Alembert's principle, 264
Damped vibrations, 320-321
Damping, critical, 321-322

negative, 360
structural, 360
viscous, 360

Damping matrix, 360-365
Dependent equations, 131
Design, fully-stressed, 382

minimum-weight, 380-382
Design iterations, 3-7
Determinants, definition, 418

expansion of, 420
properties of, 419

Diagonal, principal, 411-412
Diagonal matrix, 41 1-412
Direction cosines, 68
Discrete elements, 49-60
Discretization (see Idealization)
Displacement analysis, cantilever beam,

159-161
comparison with the force method,

226-229
formulation of, 129-137
pin-jointed truss, 155-159

Distributive law, matrices, 417
Duhamel's integrals, 344

tables of, 351-356
Dynamic coupling, 280
Dynamic displacements, 265-266, 348

uniform bar, 273-278, 371-373
Dynamic response, constrained structure,

350
damped, 359-366
due to forced displacements or earth-

quakes, 351, 356-357
due to impulsive forces, 349-350
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Dynamic response, due to steady-state
harmonic excitation, 350-351

of rocket with pulse loading, 367-370
single-degree-of-freedom, 342
unconstrained structure, 345-349
of uniform bar with forced displace-

ments, 371-373
Dynamical matrix, 314-319

Eigenvalue equation, 440
Eigenvalues, 440-442

quadratic equation, 442-444
Eigenvectors, 440-442

quadratic equation, 442-444
Elastic cigenmodes, 315
Elasto-plastic analysis, 395-396
Energy equivalence, 53-55
Energy theorems, 25-45

summary of, 45
Equations of motion, continuous system,

269-271
discrete system (matrix), 271-273
uncoupled, 346

Equilibrium equations, 21-23, 269-273
Equivalent concentrated forces, 161-163
External force systems, 193-197

Flexibility properties, tetrahedron,
184-188

triangular plate (in-plane forces),
177-181

Force analysis, cantilever beam, 219-226
comparison with displacement method,

226-229
formulation of, 200-206
pin-jointed truss, 206-219

Forced vibrations, 350-351
Free vibrations, 311
Frequencies and modes of unconstrained

structures from constrained struc-
tures, 357-359

Frequency, natural, 311
Frequency-dependent mass matrix, beam,

284-287
pin-jointed bar, 281-283

Frequency-dependent stiffness matrix,
beam, 284-287

pin-jointed bar, 281-283
Frequency determinant, 312, 314, 319-320

Generalized forces, 316-317, 346
Geometrical stiffness matrix, 384

beam, 388-391
pin-jointed bar, 386-388

Green's identity, 32-34

Fictitious deformations, 392
Fictitious forces, 392
Finite elements (see Discrete elements)
Flexibility matrix, assembled structure,

318
definition, 167
structural element (see Flexibility prop-

erties)
unassembled structure, 168

Flexibility properties, beam, 169-171,
175-176

constant-shear-flow panel, 152
linearly varying axial-force member,

153
pin-jointed bar, 168, 174
rectangular plate (with bending),

188-192
rectangular plate (in-plane forces),

181-184

Hamilton's principle, 267-269
Harmonic excitation, 350-351
Harmonic motion, 276-277, 311
Hooke's law, 14
Hrennikoff's plate model, 58

Idealization, 49-53
Identity matrix, 412
Impulse, 343, 349-350
Indicial admittance, 342
Inertia properties, beam, 292-297

parallelepiped, 301-302
pin-jointed bar, 278-280, 292
rectangular plate (bending displace-

ments), 305-309
rectangular plate (translational displace-

ments), 299
tetrahedron, 300-301
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Inertia properties, triangular plate (bend-
ing displacements), 302-305

triangular plate (translational displace-
ments), 297-299

Initial conditions, 347-348
Initial strains, 20-21
Inversion (see Matrix inversion)
Inversion of matrix products, 423
Iteration, design, 3-7

nonlinear equation, 393, 395-396
quadratic equation, 442-443

Jacobian, 104-105, 298, 301
Jordanian elimination technique, 205,

208-213,222-223,428-433

Kronecker delta, 13

y-matrix, 67
beam, 81-82
pin-jointed bar, 68-69
quadrilateral plane (in-plane forces),

106-107
rectangular plate (with bending), 121
rectangular plate (in-plane forces),

95-96

triangular plate (with bending), 115
triangular plate (in-plane forces), 87-89

Lumped masses, 309

Mass matrix, assembled structure,
290-291

condensation of, 291-292
datum coordinate system, 289
definition, 272
generalized, 316
lumped-mass representation, 309
structural element (see Inertia proper-

ties)
unassembled structure, 290

Matrix, adjoint, 420-421
augmented, 205,433
band,412-413
column, 411
definition, 410-413
diagonal, 411-412

Matrix, flexibility, 167
mass, 272
modal, 366
nonsingular, 421
null (zero), 411
order of, 410
partitioned, 413-414
rectangular, 410
row, 410-411
scalar, 412
singular, 422
skew-symmetric, 413
square, 411
stiffness, 63
strain, 16
stress, 16
symmetric, 413
thermal force, 63
thermal stiffness, 64
transposed, 415
triangular, 413
unit (identity), 412

Matrix displacement method, examples of,
155-161

Matrix force method, examples of,
206-226

Matrix inversion, Choleski method,
433-437

definition, 421
improving, 437-438
Jordan technique, 428-433
modified, 426-427
partitioning for, 424-426
reduced, 426
test for, 438-439
triple-band, 427-428

Matrix operations, addition, 414-415
differentiation, 439-440
equality, 414
integration, 440
inversion, 420-422
multiplication, 416
partitioning, 413-414
subtraction, 415
transposition, 415-416

Maxwell's reciprocal theorem, 44
Mechanism, 202, 219
Methods of analysis, 7-8
Minimum complementary potential en-

ergy, principle of, 40



INDEX 467

Minimum complementary strain energy,
theorem of, 41

Minimum potential energy, principle of,
36

Minimum strain energy, theorem of,
37

Minors, 419
Modal matrix, 366
Modification, matrix, 426-427

structural, 4

Natural frequency, 311
Nodes or nodal points, 51
Nonlinear displacement method, 384-386
Nonlinear force method, 392-395
Nonlinearities, geometric, 384

material, 384-396
Nonsingular matrix, 421
Null (zero) matrix, 411

Optimization, structural, 380-382
Orthogonality relations, 315-317
Orthonormalization, vibration modes, 366
Overconstrained structures, 314

Parallelepiped element, 301-302
Partitioned matrix, 413-414
Pin-jointed bar element, 65, 69-70,

168-169,174,273-283,292
Plate element, Hrennikoff's model of, 58

quadrilateral (in-plane forces), 102-107
rectangular (with bending), 115-122,

188-192,305-309

rectangular (in-plane forces), 89-102,
181-184,299

shear-flow, constant, 150-153
triangular (with bending), 111-115,

302-305
triangular (in-plane forces), 83-89,

177-181,297-299
Poisson's ratio, 14
Power-balance equation, 269
Principal axes, 70

Rank, 422-423
Rectangular matrix, 410

Redundancy, degree of, 201-202
Redundant structure, 199
Relative thermal displacements, definition,

167
structural element (see Flexibility prop-

erties)
Rigid-body degrees of freedom, 137-139
Rigid-body displacements, 137
Rigid-body modes, 315
Ring element, axisymmetrical, 60
Row matrix, 410-411

Scalar matrix, 412
Self-equilibrating force systems, external,

193-197
internal, 197-200

Selfstrained structure, 199
Shear flow, 150
Shear modulus, 16
Shell element, axisymmetrical, 60
Singular matrix, 422
Skew-symmetric matrix, 413
Square matrix, 411
Stability analysis, column, 400-403

displacement method, 385-386
force method, 395
truss structure, 396-399

Stability determinant, 386, 395
Statical indeterminacy, 201-202
Statically-determinate system, 201
Statically-indeterminate system, 201-202
Stiffness matrix, assembled structure, 131
condensed, 147-148

in datum coordinate system, 68
definition, 63
from flexibility, 148-150
generalized, 316
structural element, (see Stiffness proper-

ties)
unassembled structure, 130

Stiffness properties, beam, 70-82
constant shear-flow panel, 150-153
improvements in, 122, 126-128
linearly varying axial-force member,

153-155
pin-jointed bar, 69-70
quadrilateral plate (in-plane forces),

102-107
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Stiffness properties, rectangular plate (with
bending), 115-122

rectangular plate (in-plane forces),
89-102

tetrahedron, 107-111
triangular plate (with bending), 111-115
triangular plate (in-plane forces), 83-89

Strain-displacement equations, 11-12
Strain energy, 30

density of, 30
virtual, 35

Stress-strain equations, 12-21
with initial strains, 20-21
one-dimensional, 20
three-dimensional, 12-17

Stress-strain equations, two dimensional,
plane strain, 18-20
plane stress, 17-18

Stressed-skin construction, 150
String stiffness, 391
Structural elements, typical, 56-60
Structure "cutter," 251
Submatrices, 413-414
Substructure analysis, displacement meth-

od, 231-246
force method, 246-263

Symmetric matrix, 413
Synthesis, mathematical formulation of,

376-380
structural design, 380-382

Tetrahedron element, 107-111, 184-188,
300-301

Thermal dilatation, 13
Thermal force matrix, definition, 63

structural element (see Stiffness proper-
ties)

Thermal stiffness matrix, 64
Thermal strains, 13
Thermal stresses, 13-14
Time-varying displacements, 273-278,

371-373
Time-varying loads, 367-370
T-matrix, 138, 143-147
Trace of matrix, 141
Transformation matrix T, 138, 143-147
Transformation matrix V. 139-143
Transformation of coordinate axes, 67-69

Transposition of matrix products, 423
Triangular matrix, 413

Unconstrained structure, 311-313
equation of motion for, 272
equilibrium equation for, 131

Undamped vibrations, 310-315, 316-
320

Unit-displacement theorem, 37
determination of stiffness properties by,

62-65
Unit-load theorem, 41-42

determination of flexibility properties
by, 171-173

for external-force systems, 193-197
for internal-force systems, 197-200

Unit matrix, 412

Vibration analysis, with axial force,
403-405

damped systems, 320-321
fixed-free bar, 327-328
flexibility formulation of, 318-320
free-free bar, 322-327
frequency-dependent mass and stiffness,

336-339
fuselage/wing combination, 328-336
stiffness formulation of, 310-317

Virtual displacements, 34
principle of (see Virtual work, principle

of)
Virtual forces, 38

principle of, 38-40
Virtual work, 34

principle of, 34-35
in dynamics of elastic systems,

266-267

Well-conditioned equations, 227
Work, 27-28

Young's modulus, 14

Zero (null) matrix, 411
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